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Simulation

What if… ?
• The valve is closed
• The valve is made smaller 
• The upstream pressure is increased
• The controller is tuned differently

Optimization

What is best ?
• In terms of equipment and controls
• With regard to some criteria
• And operational constraints

Optimization versus Simulation

What question to ask your model?
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Optimization approaches with Modelon Impact

• FMU-based

• Both derivative-free and gradient-based 
• directional derivatives can be provided by Modelon Impact compiler

• Works for almost any Modelica model but limited number of degrees of freedom

• Workflow in Python using PyFMI, OCT API and any optimization package

• Collocation-based

• Handles a large number of degrees of freedom (trajectory optimization)

• Computationally efficient and accurate

• Moderate number of states

• Requires the model equations to be smooth

• Accessible from Python and (partially) integrated as Custom Function
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Advanced Training

• 1 full day of training

• 3 lectures and 3 workshops covering
• Basics
• Applications
• Modelling
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Outline

• A first example

• Under the hood

• Optimization friendly modelling

• Application examples
• Energy
• Aerospace
• Automotive
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A first example!

Optimal control of the 
double tank process
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Plant model Optimization objective

Optimal control of the double tank 

Use the pump in order to

• Take the level of the lower tank to 

2m as quick as possible

• Without getting any spill over in 

the upper tank of height 1m

• Flow limited to 30 kg/s

• After 10min, the upper tank should 

be back at initial level 

DEMO
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Under the hood
• Problem formulation

• Numerical approach

• Initialization

• Packaging & deployment
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Formulation of the optimization problem
Convenient formulation using optimization specific blocks & Modelica code (min/max attributes)

min
𝑢 𝑡

න

0

600

tank2. level(t) − 2 2𝑑𝑡 tank. level t < 1 𝑢 𝑡 < 30
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Formulation in Optimica

OptimicaFormulation.mop

min
𝑢 𝑡

න

0

1000

tank2. level(t) − 2 2𝑑𝑡

𝑢 𝑡 < 30

𝑡𝑎𝑛𝑘. 𝑙𝑒𝑣𝑒𝑙 𝑡 < 1.5TwoTanks.mo

Plant model Optimization formulation Optimica language

𝑡𝑎𝑛𝑘. 𝑙𝑒𝑣𝑒𝑙 0 = 𝑡𝑎𝑛𝑘. 𝑙𝑒𝑣𝑒𝑙(1000)
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Numerical approach at a glance

Continuous 
problem

Compiler Collocation
Discrete 
problem

Nonlinear 
solver

Solution

https://web.casadi.org/ https://coin-or.github.io/Ipopt/

Trajectories as 
piecewise 
polynomial

Interior point methodLarge and sparse 
discrete optimization 
problem

Solution in 
continuous time

Algorithmic 
differentiation

From Optimica 
to CasADi

min
subject to

𝑓(𝑥)

0 = 𝑔 𝑥
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈
ℎ 𝑥 ≤ 0

min
subject to

𝑓(𝑥, 𝑢, 𝑝)

ሶ𝑥 = 𝑔 𝑥, 𝑢, 𝑝
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈
𝑢𝐿 ≤ 𝑢 ≤ 𝑢𝑈
ℎ 𝑥, 𝑢, 𝑝 ≤ 0

https://web.casadi.org/
https://coin-or.github.io/Ipopt/
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Initialization of the optimization

The nonlinear program requires a reasonable guess for all model 
variables over the entire time horizon.

1. Construct a reasonable initial guess of the degrees of freedom

• Parameters: Your best estimate

• Inputs: Constants or simple controllers

2. Simulate system with this guess to generate a complete initial 
guess of the system

3. Solve dynamic optimization problem with initialization simulation 
result as initial guess

4. Simulate system with optimal degrees of freedom, to verify the 
result

Initialization 
simulation

Guess for control and design

Dynamic 
optimization

Guess for all system variables

Verified optimal system variables

Verification 
simulation

Optimal control and design
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Overall workflow package as a custom function

Initialization
Plant 

Model

Objective 
function & 
constraints

Data

OPTIMAL 
design/
plan
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Import methods for compilation and fmu loading

Python implementation

Compilation & loading of the model for 
initialization

Initial simulation

Compilation of the optimica code

Optimization options

Optimization
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OPTIMIZATION WORKFLOW DEPLOYMENT

Model-centric view to test the workflow on new models Web-app for deploymentNotebook for workflow design
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• The dynamic optimization framework computes optimal open-
loop trajectories

• Feedback is necessary to handle

• Model-plant mismatch

• Disturbances

• Model predictive control is a framework for introducing 
feedback:

• In each sample point, compute optimal control for the 
coming N samples

• Until next sample, apply first sample point of optimal 
control

• Update state estimate based on measurements, repeat

MODEL PREDICTIVE CONTROL

©2021 Modelon



©2022 Modelon. All Rights Reserved.

Optimization-Friendly 
Modelling
• Basic requirements

• Fundamental limitations

• Building new models
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Smoothness requirements

• Equation expressions must be twice continuously differentiable, 𝐶2, with respect to all optimization 
variables ( ሶ𝑥, 𝑥, 𝑦, 𝑢, 𝑝)

• Consequences:

• No discrete variables and equations (except parameters)

• No event-generating expressions

• Smooth equations

• If requirements not satisfied, the following may happen:

• Compilation failure

• Solver failure

• Often very difficult to diagnose solver failure caused by non-smoothness!

• Bad solver performance

• Inaccurate solution

• If you are lucky, nothing at all!
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Smoothness checker

• Compiler options to check that smoothness requirements are satisfied:
• allow_discrete_variables: Set to False to detect discrete, non-parametric 

variables
• allow_when_clauses: Set to False to detect when clauses
• allow_discrete_switches: Set to False to detect event-generating expressions
• system_continuity_order: Set to 2 to detect expressions that the compiler 

cannot verify are twice continuously differentiable

• Recommended to enable these when developing optimization-friendly models
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• Typical non-smooth functions that need smooth approximations:
• Max
• Min
• Saturation
• Step
• … 

• Activation point and region to be specified (see Figure to the right)
• Inputs should be shifted and scaled: 𝑦smooth = stepC2(

𝑥−𝑥𝑠ℎ𝑖𝑓𝑡

Δ
)

• Analytic differentiability is not sufficient. Needs to be numerically smooth!

• Important to preserve monotonicity

SMOOTHING TECHNIQUES
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LIMITATIONS

• CasADi Interface supports a large (but incomplete) set of the Modelica language

• Two categories of limitations:
• Fundamental limitations: Some constructs are inherently discrete and should 

never be used for gradient-based optimization (pre(), edge(), reinit()…)
• Compiler limitations: Constructs that may be useful for optimization but not yet 

supported by OCT ex: String, external functions
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Optimization friendly packages

Three packages inside Thermal Power 
have been derived for dynamic 
optimization

Additional content to describe boilers 
can be provided on demand

Good starting point for deriving new 
models 
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Recommended workflow for system modelling

• When building models, start small and add complexity as you go along

• Test each step! Starting with a large, complex, broken model will be very difficult to debug

• Testing steps:

• FMU compilation, with smoothness check

• Dynamic simulation, result verification

• Transfer to CasADi Interface

• Solve optimization problem
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Applications
• Energy

• Aerospace

• Automotive
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Energy
• Microgrid design & operation

• Model Predictive Control for boiler start-up

DEMO
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Examples of applications

District Heating
• Production planning

• Network aggregation

• Transport delays

Power plant
• Start-up optimization

• Thermal & mechanical stress 

• Offline & online optimization

• Nonlinear predictive control

• Experimental tests by Siemens

• OPC communication

Micro-grid
• Optimal design & operation

• Forecast for weather, electricity 
price, load

• Peak shaving

• Economic dispatch

CO2 capture
• Optimal operation

• DOF: reboiler duty and circulation rate

• Target removal efficiency

• Reboiler pressure constraint
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Aerospace

Drone sizing and control
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Building

The drone architecture is composed of:

1. Four fixed pitch propellers

2. Four out-runner brushless motors

3. Four electronic speed controllers (ESC) mainly
made from MOSFET inverters

4. One battery based on Li-Ion cells

5. One mechanical structure (frame) consisting of
four arms and one central body
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Start

End

Height

Time

?

Drone trajectory is a 
degree of freedom

Component 
sizings

Total mass

Power 
requirements

We want to maximize the number of flights, hence our objective is to minimize the energy consumption per flight.
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Start

End

Height

Time

?

Drone trajectory is a 
degree of freedom

Component 
sizings

Total mass

Power 
requirements

We want to maximize the number of flights, hence our objective is to minimize the energy consumption per flight.

Modelica Drone model with
• Pre-sizing
• Mass estimation
• Behavior

Optimica model including
• Objective
• Trajectory optimization
• Constraints
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optimization SizingAndTrajectoryOptim (

objective=M_total(startTime),

finalTime(free=true, min=1, max=10, start=5))

// Minimize the total drone mass and relax the final simulation time within bounds.

import Modelica.Units.SI.DimensionlessRatio;

extends Drone(

x(start = 0, fixed=true),

xp(start = 0, fixed=true),

a(start = 0, fixed=true),

beta(free=true, min=0.3, max=0.6, start=0.4),

D(free=true, min=0, max=1),

T_nom_mot(free=true, min=0),

K_mot(free=true, min=0),

M_bat(free=true, min=0, max=100),

P_esc(free=true, min=0),

k_D(free=true, min=0.01, max=1, start=0.05),

D_out_arm(free=true, min=0.001, max=1));

// Inherit the Modelica drone model, fix initial conditions and relax design parameters within 

bounds.

Modelica.Blocks.Interfaces.RealInput Traj_in;

// Add input to the trajectory to optimize

…

…

DimensionlessRatio n_norm(start=1, fixed=true)=n/n_hover;

DimensionlessRatio N_norm(min=-1, max=1, nominal=0.8)=ND/ND_max;

DimensionlessRatio T_hov_norm(min=0, max=1, nominal=0.6) = T_hover/T_nom_mot;

DimensionlessRatio T_norm(min=-1, max=1, nominal=0.95) = T/T_max_mot;

DimensionlessRatio U_norm(min=0, max=1, nominal=0.5) = U_mot/V_bat;

DimensionlessRatio P_norm(min=0, max=1, nominal=0.5) = P_mot/P_esc;

DimensionlessRatio E_norm(min=0, max=1, nominal=0.25) = E_drone/E_bat;

DimensionlessRatio sigma_norm(min=-1, max=1, nominal=0.15) = sigma/sigma_max;

// Create additional normalized variables with bounds as inequality constraints

equation

T=Traj_in; // Bind drone trajectory with optimization input

constraint

x(finalTime) = 10;

xp(finalTime) = 0;

a(finalTime) = 0;

// Define end time constraints.

end SizingAndTrahjectoryOptim;
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Automotive

Trajectory optimization of a racing car
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t

s

𝑟𝑡
𝑟𝑡 - Current 
lateral position in 
track coordinates

𝑟𝑠 𝑟𝑠 - Current longitudinal 
position in track 
coordinates

𝑝𝑧,𝑟𝑒𝑙 - Vehicle 
direction relative 
to track

𝑝𝑧,𝑡𝑟𝑎𝑐𝑘 - Global 
track direction

optimization LapTimeMinimization(

objective=100*finalTime+1*icost(finalTime),

startTime = 0,

finalTime(free=true,max=160,min=10,initialGuess=122))

Two-track vehicle model with 
combined slip and relaxation 
dynamics (not multibody based)

Local track coordinate system based 
on curvature and distance along track

Simple optimization formulation, cost on 
lap time + small cost on actuator usage
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Oval track
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Example of variable 
track width
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Friction usage Tire forces

Rear inside wheel is first to be 
limited by grip
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Road course
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Conclusion

• Modelon Impact offers powerful dynamic optimization methods

• They set some requirements on the models
• Smooth
• No discrete dynamics

• Recent integration of the workflow into the main GUI

• Ideally for optimal control & scheduling problems

• Relatively easy to apply in feasibility studies


