
©2022 Modelon. All Rights Reserved.

Dynamic Optimization

Innovate 2022

Day 2 – October 20th , Stockholm

©2022 Modelon. All Rights Reserved.

Industry Director, Energy

At Modelon since 2009

PhD in Controls from Lund University, Sweden (2005)

M. Sc. E.E, Grenoble Institute of Technology, France (1999)

Stéphane Velut

©2022 Modelon. All Rights Reserved.

Simulation

What if… ?
• The valve is closed
• The valve is made smaller
• The upstream pressure is increased
• The controller is tuned differently

Optimization

What is best ?
• In terms of equipment and controls
• With regard to some criteria
• And operational constraints

Optimization versus Simulation

What question to ask your model?

©2022 Modelon. All Rights Reserved.

Optimization approaches with Modelon Impact

• FMU-based

• Both derivative-free and gradient-based
• directional derivatives can be provided by Modelon Impact compiler

• Works for almost any Modelica model but limited number of degrees of freedom

• Workflow in Python using PyFMI, OCT API and any optimization package

• Collocation-based

• Handles a large number of degrees of freedom (trajectory optimization)

• Computationally efficient and accurate

• Moderate number of states

• Requires the model equations to be smooth

• Accessible from Python and (partially) integrated as Custom Function

©2022 Modelon. All Rights Reserved.

Advanced Training

• 1 full day of training

• 3 lectures and 3 workshops covering
• Basics
• Applications
• Modelling

©2022 Modelon. All Rights Reserved.

Outline

• A first example

• Under the hood

• Optimization friendly modelling

• Application examples
• Energy
• Aerospace
• Automotive

©2022 Modelon. All Rights Reserved.

A first example!

Optimal control of the
double tank process

©2022 Modelon. All Rights Reserved.

Plant model Optimization objective

Optimal control of the double tank

Use the pump in order to

• Take the level of the lower tank to

2m as quick as possible

• Without getting any spill over in

the upper tank of height 1m

• Flow limited to 30 kg/s

• After 10min, the upper tank should

be back at initial level

DEMO

©2022 Modelon. All Rights Reserved.

Under the hood
• Problem formulation

• Numerical approach

• Initialization

• Packaging & deployment

©2022 Modelon. All Rights Reserved.

Formulation of the optimization problem
Convenient formulation using optimization specific blocks & Modelica code (min/max attributes)

min
𝑢 𝑡

න

0

600

tank2. level(t) − 2 2𝑑𝑡 tank. level t < 1 𝑢 𝑡 < 30

©2022 Modelon. All Rights Reserved.

Formulation in Optimica

OptimicaFormulation.mop

min
𝑢 𝑡

න

0

1000

tank2. level(t) − 2 2𝑑𝑡

𝑢 𝑡 < 30

𝑡𝑎𝑛𝑘. 𝑙𝑒𝑣𝑒𝑙 𝑡 < 1.5TwoTanks.mo

Plant model Optimization formulation Optimica language

𝑡𝑎𝑛𝑘. 𝑙𝑒𝑣𝑒𝑙 0 = 𝑡𝑎𝑛𝑘. 𝑙𝑒𝑣𝑒𝑙(1000)

©2022 Modelon. All Rights Reserved.

Numerical approach at a glance

Continuous
problem

Compiler Collocation
Discrete
problem

Nonlinear
solver

Solution

https://web.casadi.org/ https://coin-or.github.io/Ipopt/

Trajectories as
piecewise
polynomial

Interior point methodLarge and sparse
discrete optimization
problem

Solution in
continuous time

Algorithmic
differentiation

From Optimica
to CasADi

min
subject to

𝑓(𝑥)

0 = 𝑔 𝑥
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈
ℎ 𝑥 ≤ 0

min
subject to

𝑓(𝑥, 𝑢, 𝑝)

ሶ𝑥 = 𝑔 𝑥, 𝑢, 𝑝
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈
𝑢𝐿 ≤ 𝑢 ≤ 𝑢𝑈
ℎ 𝑥, 𝑢, 𝑝 ≤ 0

https://web.casadi.org/
https://coin-or.github.io/Ipopt/

©2022 Modelon. All Rights Reserved.

Initialization of the optimization

The nonlinear program requires a reasonable guess for all model
variables over the entire time horizon.

1. Construct a reasonable initial guess of the degrees of freedom

• Parameters: Your best estimate

• Inputs: Constants or simple controllers

2. Simulate system with this guess to generate a complete initial
guess of the system

3. Solve dynamic optimization problem with initialization simulation
result as initial guess

4. Simulate system with optimal degrees of freedom, to verify the
result

Initialization
simulation

Guess for control and design

Dynamic
optimization

Guess for all system variables

Verified optimal system variables

Verification
simulation

Optimal control and design

©2022 Modelon. All Rights Reserved.

Overall workflow package as a custom function

Initialization
Plant

Model

Objective
function &
constraints

Data

OPTIMAL
design/
plan

©2022 Modelon. All Rights Reserved.

Import methods for compilation and fmu loading

Python implementation

Compilation & loading of the model for
initialization

Initial simulation

Compilation of the optimica code

Optimization options

Optimization

©2022 Modelon. All Rights Reserved.

OPTIMIZATION WORKFLOW DEPLOYMENT

Model-centric view to test the workflow on new models Web-app for deploymentNotebook for workflow design

©2022 Modelon. All Rights Reserved.

• The dynamic optimization framework computes optimal open-
loop trajectories

• Feedback is necessary to handle

• Model-plant mismatch

• Disturbances

• Model predictive control is a framework for introducing
feedback:

• In each sample point, compute optimal control for the
coming N samples

• Until next sample, apply first sample point of optimal
control

• Update state estimate based on measurements, repeat

MODEL PREDICTIVE CONTROL

©2021 Modelon

©2022 Modelon. All Rights Reserved.

Optimization-Friendly
Modelling
• Basic requirements

• Fundamental limitations

• Building new models

©2022 Modelon. All Rights Reserved.

Smoothness requirements

• Equation expressions must be twice continuously differentiable, 𝐶2, with respect to all optimization
variables (ሶ𝑥, 𝑥, 𝑦, 𝑢, 𝑝)

• Consequences:

• No discrete variables and equations (except parameters)

• No event-generating expressions

• Smooth equations

• If requirements not satisfied, the following may happen:

• Compilation failure

• Solver failure

• Often very difficult to diagnose solver failure caused by non-smoothness!

• Bad solver performance

• Inaccurate solution

• If you are lucky, nothing at all!

©2022 Modelon. All Rights Reserved.

Smoothness checker

• Compiler options to check that smoothness requirements are satisfied:
• allow_discrete_variables: Set to False to detect discrete, non-parametric

variables
• allow_when_clauses: Set to False to detect when clauses
• allow_discrete_switches: Set to False to detect event-generating expressions
• system_continuity_order: Set to 2 to detect expressions that the compiler

cannot verify are twice continuously differentiable

• Recommended to enable these when developing optimization-friendly models

©2022 Modelon. All Rights Reserved.

• Typical non-smooth functions that need smooth approximations:
• Max
• Min
• Saturation
• Step
• …

• Activation point and region to be specified (see Figure to the right)
• Inputs should be shifted and scaled: 𝑦smooth = stepC2(

𝑥−𝑥𝑠ℎ𝑖𝑓𝑡

Δ
)

• Analytic differentiability is not sufficient. Needs to be numerically smooth!

• Important to preserve monotonicity

SMOOTHING TECHNIQUES

©2022 Modelon. All Rights Reserved.

LIMITATIONS

• CasADi Interface supports a large (but incomplete) set of the Modelica language

• Two categories of limitations:
• Fundamental limitations: Some constructs are inherently discrete and should

never be used for gradient-based optimization (pre(), edge(), reinit()…)
• Compiler limitations: Constructs that may be useful for optimization but not yet

supported by OCT ex: String, external functions

©2022 Modelon. All Rights Reserved.

Optimization friendly packages

Three packages inside Thermal Power
have been derived for dynamic
optimization

Additional content to describe boilers
can be provided on demand

Good starting point for deriving new
models

©2022 Modelon. All Rights Reserved.

Recommended workflow for system modelling

• When building models, start small and add complexity as you go along

• Test each step! Starting with a large, complex, broken model will be very difficult to debug

• Testing steps:

• FMU compilation, with smoothness check

• Dynamic simulation, result verification

• Transfer to CasADi Interface

• Solve optimization problem

©2022 Modelon. All Rights Reserved.

Applications
• Energy

• Aerospace

• Automotive

©2022 Modelon. All Rights Reserved.

Energy
• Microgrid design & operation

• Model Predictive Control for boiler start-up

DEMO

©2022 Modelon. All Rights Reserved.

Examples of applications

District Heating
• Production planning

• Network aggregation

• Transport delays

Power plant
• Start-up optimization

• Thermal & mechanical stress

• Offline & online optimization

• Nonlinear predictive control

• Experimental tests by Siemens

• OPC communication

Micro-grid
• Optimal design & operation

• Forecast for weather, electricity
price, load

• Peak shaving

• Economic dispatch

CO2 capture
• Optimal operation

• DOF: reboiler duty and circulation rate

• Target removal efficiency

• Reboiler pressure constraint

©2022 Modelon. All Rights Reserved.

SELECTED REFERENCES

©2021 Modelon

• Dietl et al. (2018) Start up optimization of Combined Cycle Power Plants: Controller development and real plant test results, CoDIT

• Schweiger et al., (2017) District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization, In Energy

• MacRae N et al. (2020) Micro-grid Design and Cost Optimization using Modelica, American Control Conference

• Dietl et al., (2014) Industrial application of optimization with Modelica and Optimica using intelligent Python scripting. Modelica conference

• Holmqvist A. et al (2016) Open-loop optimal control of batch chromatographic separation processes using direct collocation In Journal of Process Control 46. p.55-74

• M. Wetter and C. van Treeck (2017). New Generation Computational Tools for Building & Community Energy Systems. Annex 60 Final Report. IEA

• Fouquet M. et al, (2014), Hybrid dynamic optimization of power plants using Sum-Up Rounding and adaptive mesh refinement, IEEE Conf on control Applications

• R. De Coninck, L. Helsen (2016). Practical implementation and evaluation of model predictive control for an office building in Brussels. Energy and Buildings.

• R. De Coninck et al, (2015). Toolbox for development and validation of grey-box building models for forecasting and control. Journal of Building Performance Simulation.

• PhD theses from the Automatic Control department in Lund
• Fredrik Magnusson (2016), Numerical and Symbolic Methods for Dynamic Optimization
• Per-Ola Larsson, (2011), Optimization of Low-Level Controllers and High-Level Polymer Grade Changes
• Staffan Haugwitz (2007), Modeling, Control and Optimization of a Plate Reactor
• Johan Åkesson (2007), Languages and Tools for Optimization of Large-Scale Systems

©2022 Modelon. All Rights Reserved.

Aerospace

Drone sizing and control

©2022 Modelon. All Rights Reserved.

Building

The drone architecture is composed of:

1. Four fixed pitch propellers

2. Four out-runner brushless motors

3. Four electronic speed controllers (ESC) mainly
made from MOSFET inverters

4. One battery based on Li-Ion cells

5. One mechanical structure (frame) consisting of
four arms and one central body

©2022 Modelon. All Rights Reserved.

Start

End

Height

Time

?

Drone trajectory is a
degree of freedom

Component
sizings

Total mass

Power
requirements

We want to maximize the number of flights, hence our objective is to minimize the energy consumption per flight.

©2022 Modelon. All Rights Reserved.

Start

End

Height

Time

?

Drone trajectory is a
degree of freedom

Component
sizings

Total mass

Power
requirements

We want to maximize the number of flights, hence our objective is to minimize the energy consumption per flight.

Modelica Drone model with
• Pre-sizing
• Mass estimation
• Behavior

Optimica model including
• Objective
• Trajectory optimization
• Constraints

©2022 Modelon. All Rights Reserved.

optimization SizingAndTrajectoryOptim (

objective=M_total(startTime),

finalTime(free=true, min=1, max=10, start=5))

// Minimize the total drone mass and relax the final simulation time within bounds.

import Modelica.Units.SI.DimensionlessRatio;

extends Drone(

x(start = 0, fixed=true),

xp(start = 0, fixed=true),

a(start = 0, fixed=true),

beta(free=true, min=0.3, max=0.6, start=0.4),

D(free=true, min=0, max=1),

T_nom_mot(free=true, min=0),

K_mot(free=true, min=0),

M_bat(free=true, min=0, max=100),

P_esc(free=true, min=0),

k_D(free=true, min=0.01, max=1, start=0.05),

D_out_arm(free=true, min=0.001, max=1));

// Inherit the Modelica drone model, fix initial conditions and relax design parameters within

bounds.

Modelica.Blocks.Interfaces.RealInput Traj_in;

// Add input to the trajectory to optimize

…

…

DimensionlessRatio n_norm(start=1, fixed=true)=n/n_hover;

DimensionlessRatio N_norm(min=-1, max=1, nominal=0.8)=ND/ND_max;

DimensionlessRatio T_hov_norm(min=0, max=1, nominal=0.6) = T_hover/T_nom_mot;

DimensionlessRatio T_norm(min=-1, max=1, nominal=0.95) = T/T_max_mot;

DimensionlessRatio U_norm(min=0, max=1, nominal=0.5) = U_mot/V_bat;

DimensionlessRatio P_norm(min=0, max=1, nominal=0.5) = P_mot/P_esc;

DimensionlessRatio E_norm(min=0, max=1, nominal=0.25) = E_drone/E_bat;

DimensionlessRatio sigma_norm(min=-1, max=1, nominal=0.15) = sigma/sigma_max;

// Create additional normalized variables with bounds as inequality constraints

equation

T=Traj_in; // Bind drone trajectory with optimization input

constraint

x(finalTime) = 10;

xp(finalTime) = 0;

a(finalTime) = 0;

// Define end time constraints.

end SizingAndTrahjectoryOptim;

©2022 Modelon. All Rights Reserved.

©2022 Modelon. All Rights Reserved.

Automotive

Trajectory optimization of a racing car

©2022 Modelon. All Rights Reserved.

t

s

𝑟𝑡
𝑟𝑡 - Current
lateral position in
track coordinates

𝑟𝑠 𝑟𝑠 - Current longitudinal
position in track
coordinates

𝑝𝑧,𝑟𝑒𝑙 - Vehicle
direction relative
to track

𝑝𝑧,𝑡𝑟𝑎𝑐𝑘 - Global
track direction

optimization LapTimeMinimization(

objective=100*finalTime+1*icost(finalTime),

startTime = 0,

finalTime(free=true,max=160,min=10,initialGuess=122))

Two-track vehicle model with
combined slip and relaxation
dynamics (not multibody based)

Local track coordinate system based
on curvature and distance along track

Simple optimization formulation, cost on
lap time + small cost on actuator usage

©2022 Modelon. All Rights Reserved.

Oval track

©2022 Modelon. All Rights Reserved.

Example of variable
track width

©2022 Modelon. All Rights Reserved.

Friction usage Tire forces

Rear inside wheel is first to be
limited by grip

©2022 Modelon. All Rights Reserved.

Road course

©2022 Modelon. All Rights Reserved.

Conclusion

• Modelon Impact offers powerful dynamic optimization methods

• They set some requirements on the models
• Smooth
• No discrete dynamics

• Recent integration of the workflow into the main GUI

• Ideally for optimal control & scheduling problems

• Relatively easy to apply in feasibility studies

