
WORKSHOP
Initialization and Debugging in Modelon Impact

Copyright © 2022 Modelon

Contents
Introduction ... 1

Import the workspace .. 1

Simulating a dynamic model ... 2

Model with linear systems ... 5

Model with non-linear systems .. 7

Initialize dynamic system in steady state .. 9

Closed Steam Cycle Example .. 11

Introduction
In this workshop, you will familiarize yourself with the some of the debugging tools available in

Modelon Impact, that will allow you to understand the models states, linear and non-linear systems.

Import the workspace
1. In the training content you downloaded for Innovate, find the Debugging.zip workspace file.

2. On the Modelon Impact landing page, click “Import” and choose the Debugging.zip workspace

file.

3. You are now set to start the workshop!

Copyright © 2022 Modelon

Simulating a dynamic model
We will start by investigating a simple dynamic model.

1. Open the model “Debugging.CausationSimple.ThermalWithState”.

2. Press the Simulate button.

3. Plot the heatCapacitor.T variable

To understand the resulting mathematical system that Modelon Impact simulates, what state

variables represent the dynamics, and how its initialized, we can use

“generate_HTML_diagnostics” option to generate a model report.

4. Open the Settings and go to the “Execution” tab, and turn on the setting:

5. Re-run the model again to generate the report.

Copyright © 2022 Modelon

6. Open the report in the result pane, and right click the specific result:

7. Click “View diagnostics”

Copyright © 2022 Modelon

8. Open the State variables section:

9. Here we can see that the model has 1 state, heatCapacitor.T

10. Open the “Initalization equation blocks” and click “Interactive matrix” to see the BLT

diagram, for solving the initial equations (note that there is a separate section for the

dynamic equations)

11. From this view, we can see in the first line, that the initial equation for the state variable

heatCapacitor.T = 293.15.

12. Go back into the model, make sure you are in “modeling mode”, and change the initial

condition for the state variable, and see if the initial equation is changed in the BLT

diagram (you need to open the new “View diagnostics” report for the new result, they

are re-generated per result).

In the example below, we changed the initial condition to 300K:

Copyright © 2022 Modelon

Model with linear systems
In the following example, we will see that we need to solve a linear system of equations to get

the results.

Copyright © 2022 Modelon

1. Open the model “Debugging.CausationLinear.Thermal”.

2. We now removed the heat capacitor, so there is no dynamic state in the model.

3. Simulate the model, and inspect the diagnostics:

4. We can now see the presence of a linear system, and the variable to be solved for is

“thermalResistor.Q_flow”.

5. Inspect the BLT for the initial problem:

Copyright © 2022 Modelon

6. Here you can see that the BLT diagram has a “X” in the top right, so it needs to solve the

complete linear system.

Model with non-linear systems
In the next section, we will investigate non-linear systems, and the possibility to influence the

initial conditions of the iteration variables.

1. Open the model “Debugging.CausationNonLinear.Thermal”:

2. This time we have 2 radiation elements, and still no heatCapacitor in between with any

state, so this will generate a system of non-linear equations.

Copyright © 2022 Modelon

3. Simulate the model, and open the diagnostics:

4. Here we see that the model has 1 non-linear equation system. The iteration variable is

bodyRadiation.port_b.T and the initial guess value is set to 288.15.

5. Open the BLT diagram, and verify the nonlinear system:

6. Go back into the model, and the modeling view.

7. Open the Components browser, and locate the iteration variable:

Copyright © 2022 Modelon

8. Change the initial guess value of the temperature, and see if there is any update to the

“diagnostics”.

9. Note: you cannot use fixed=true on an iteration variable, since that would enforce an

initial equation stating T=T.start, and that is not possible since the solver needs to find T

such that all equations are fulfilled.

Initialize dynamic system in steady state
Lets go back and revisit the dynamic case, but set a steady state initial condition.

1. Open the model “Debugging.CausationSimple.ThermalWithStateInitSS”:

2. Double click the heatCapacitor and look at the “Variables” section:

Copyright © 2022 Modelon

3. If we want to invoke a steady state condition for the initialization, we can simply set

der_T(start=0,fixed=true).

4. Run the model, and plot the heat capacitor temperature.

We can see that there are no transients present.

Copyright © 2022 Modelon

5. Open the diagnostics report:

We can now identify that the model does have a state variable, but also need to solve a linear

system of equations for the initialization problem, due to the steady state condition.

Also note that the dynamic problem is the same as before and does not include any linear or

non-linear systems.

Closed Steam Cycle Example
Let’s apply the knowledge we got in the simple examples on a more complex problem.

1. Note: There is a cap for how large a model is allowed to generate the diagnostics, and for large

models, it might be necessary to increase the allowed model size in the compiler settings:

Copyright © 2022 Modelon

2. Set the diagnostic_limit to 5000

3. Open the model “Debugging.SystemModel.ClosedSteamCycle”:

4. Try and run the model.

Copyright © 2022 Modelon

5. The model fails and throws an error:

6. (scroll to bottom) Initialization failed, and could not find a solution for init block 3. (non-

linear system of equations)

7. Open the “diagnostics”, in the “Initialization equation blocks” identify what iterations

variables are part of the block “(init)3”:

Copyright © 2022 Modelon

8. Review the Initialization settings in the “riser” component:

9. Since initOpt “Steady-state” is selected here, a successful initialization requires the

existence of a steady state solution for the block. This is often challenging and requires

very accurate guess values.

10. Try initOpt “Initialization using start values” instead.

11. Re-run the simulation.

12. The initialization should run successful now – review the result, specifically those of

“riser.der(p)” and “riser.p” – see that at t=0s, the pressure derivative differed

Copyright © 2022 Modelon

significantly from zero, indicating that neibouring initial conditions force a rapid change

of pressure in the riser.

13. Review the “diagnostics” again, see that through removing the steady-state initialization

option, the non-linear block “(init)3” that did not converge before, is now

14. Change the initial condition in the riser back to “steady-state”. Since the solver was not

able to find a solution by iterating inside the block, changing its boundary conditions

might enable the solver to find a solution. E.g. use the “range-opeator” to sweep the

“pstart” in the neiboring “drum” component to see what initial values allow the system to

solve:

Copyright © 2022 Modelon

This concludes the workshop. Well done!

