
©2022 Modelon. All Rights Reserved.

Modelon Impact

Open Innovation

Presented by Modelon

©2022 Modelon. All Rights Reserved.

Open Architecture

• Openness through well defined API

On-premise or public
cloud

©2022 Modelon. All Rights Reserved.

Growth Hackathon

Excel

Node RED

Oculus Quest

Winners

Dash

Human in the loop

©2022 Modelon. All Rights Reserved.

Directions

• Impact today:
• Modeling in browser

• Simulation in browser
• JupyterLab

• Custom functions

• Custom web apps

• Declarative experiment workflow definitions

• Massive parallel simulations

• Post processing, visualization and decision support

©2022 Modelon. All Rights Reserved.

Demos

• Modelon Impact Excel Add-In

• Dashboarding with Dash

• Digital Twin with NodeRED

©2022 Modelon. All Rights Reserved.

Modelon Impact Excel Add-In

• Engineers (and Others) in Most Companies work daily in Excel

• Data from MI Simulations will likely at one point end up in an Excel Spreadsheet

• Integrate the usage of both applications!

©2022 Modelon. All Rights Reserved.

Building Blocks

Office JavaScript API library

Modelon Impact Client for JavaScript

Modelon ImpactExcel

Modelon Impact API

©2022 Modelon. All Rights Reserved.

Demo

Modelon Impact Excel Add-In

©2022 Modelon. All Rights Reserved.

Dashboards with Dash

https://modelon-impact-client.readthedocs.io

https://impact.modelon.cloud
https://dash.plotly.com

https://modelon-impact-client.readthedocs.io/
https://impact.modelon.cloud/
https://dash.plotly.com/

©2022 Modelon. All Rights Reserved.

Build and prepare models in Impact

• Put together your models
• Set up parameterizations
• Set up measurements and KPI

outputs

©2022 Modelon. All Rights Reserved.

Impact Python Client

Impact Python Client handles communication
with the server, including authentication

from modelon.impact.client import Client

client = Client(url=<impact-domain>)

workspace = client.create_workspace(<workspace name>)

model = workspace.get_model("Modelica.Blocks.Examples.PID_Controller")

dynamic = workspace.get_custom_function('dynamic’)

experiment_definition = model.new_experiment_definition(dynamic)

experiment = workspace.execute(experiment_definition).wait()

import plotly.graph_objects as go

fig = go.Figure()

for case in experiment.get_cases():

if case.is_successful():

result = case.get_trajectories()

fig.add_trace(go.Scatter(x=result['time’], y=result['inertia1.phi’]))

fig.show()

Simple example of simulating a
model and plotting results:

©2022 Modelon. All Rights Reserved.

Python based framework for building web
apps

Access to the full range of plot options from
Plotly

Low threshold to building interactive
visualizations

https://dash.plotly.com

from dash import Dash, html, dcc
import plotly.express as px
import pandas as pd

app = Dash(__name__) # assume you have a "long-form" data frame
see https://plotly.com/python/px-arguments/ for more options

df = pd.DataFrame({ "Fruit": ["Apples", "Oranges", "Bananas",
"Apples", "Oranges", "Bananas"], "Amount": [4, 1, 2, 2, 4, 5],
"City": ["SF", "SF", "SF", "Montreal", "Montreal", "Montreal"]
})

fig = px.bar(df, x="Fruit", y="Amount", color="City",
barmode="group")

app.layout = html.Div(children=[html.H1(children='Hello Dash'),
html.Div(children=''' Dash: A web application framework for your
data. '''), dcc.Graph(id='example-graph', figure=fig)])

if __name__ == '__main__': app.run_server(debug=True)

Simple app example with a figure:

https://dash.plotly.com/

©2022 Modelon. All Rights Reserved.

Example 1: Calibration dashboard

Select model, inspect results

Upload measurement data, inspect signals

Select variables to calibrate

Select parameters to use for calibration

Calibrate model to measurements

©2022 Modelon. All Rights Reserved.

Example 2: Multi-execution dashboard

Select model, inspect results

Set up distributions for selected variables,
decide number of cases

Visualize results, both scatter plot and
time traces

©2022 Modelon. All Rights Reserved.

Demo

Digital Twin in Modelon Impact

©2022 Modelon. All Rights Reserved.

Digital Twin – From Design to Operation

Component
Design

Module
Design

Requirements & Performance Targets
Finished Product

Component
Verification

Module Integration &
Verification

System Integration
& Validation

System
Design

Engineering Design

Real World

Battery life&
SOH twin

Powertrain fault
detection twin

Virtual World

System Operation

©2022 Modelon. All Rights Reserved.

Examples of application

• Equipment health monitoring

• Predictive maintenance

• Fault detection & isolation

• Soft sensing

• Operating decision support

• Real-time optimal control

©2022 Modelon. All Rights Reserved.

Platform requirements

• A connected simulation platform for bi-
directional data exchange

• Plant models & algorithms that can be
executed at real-time

• Versatile modelling platform to describe
various aspects of a process
• Short and long-term
• Different physical domains
• Low or hi-fidelity depending on the

computation

Real World

Real object in operation

Bi-directional data
exchange

Virtual World

Process Model

Algorithm

Value creation

©2022 Modelon. All Rights Reserved.

Previous digital twins based on Modelon components

Modelon’s back-end has already been used in Digital Twin context

Plant FMU imported into data
management system

• Optimization routines to solve for state
estimation and optimal control

• OPC communication with control system

©2022 Modelon. All Rights Reserved.

MODELON IMPACT ECOSYSTEM

Workspace 1

Version control
your project files

Use Modelon Impact from
your favorite tools

REST-API

Workspace 2

Storage & compute engine

High product quality using software
dev best practices (CI/CD)

Regression Testing

IoT

Export

Import
Tools

Tools Simulation
cluster

Modelon or 3rd party made

Modelon Impact Partner:
Create Production Applications

HIL

Create Production
Applications

APP 1 APP 2

REST-API

©2022 Modelon. All Rights Reserved.

Digital Twin – proof of concept

Goal: use Modelon Impact + ecosystem to build a digital twin that estimates the
performance of a heat exchanger

• Bi-directional data exchange: MQTT

• Physical model on the cloud: Modelon Impact and libraries

• State estimation on the cloud: Custom function in Python

• Local dashboard for visualization: Node-red and Java-script API

©2022 Modelon. All Rights Reserved.

Extended Kalman filter

Observer

Plant
Measurements

Disturbances

Observer FMU

EKF
component

Plant model
Disturbance

model

Python

Modeled
disturbances

Prediction Correction

𝐴𝑘|𝑘, 𝐶𝑘|𝑘−1
𝐴𝑘|𝑘

©2022 Modelon. All Rights Reserved.

Target implementation

©2022 Modelon. All Rights Reserved.

Current status

©2022 Modelon. All Rights Reserved.

Accurate Simulations. Better Decisions.

