
©2022 Modelon. All Rights Reserved.

Modelon Impact Cloud:

Tools and Add-ons

Presented by Modelon

©2022 Modelon. All Rights Reserved.

• Introduction

• Impact Tools and Add-Ons

• Why Scripting?

• Scripting with Modelon Impact

• Hands-On workshop

• Jupyter Notebook Handout

• Follow along with Instructor

Outline

©2022 Modelon. All Rights Reserved.

Impact Tools and Add-ons

• Productivity tools included

• Compare vs. Desktop

• Scripting/Programming

• Version control

©2022 Modelon. All Rights Reserved.

Modelon Impact Cloud

• Linux based operative system

• File Storage

• Set of pre-installed Tools

• Impact Tools:

• Server management

• Workspace management

• Advanced Tools:

• VS Code

• JupyterLab

Impact.modelon.cloud

https://impact.modelon.cloud/user/user.name@example.com

©2022 Modelon. All Rights Reserved.

VS Code

Web Version of Visual Studio Code

• File Explorer

• Coding IDE

• Version Control

• Debugger

• Terminal

©2022 Modelon. All Rights Reserved.

VS Code: Opening context

• Opening from the Workspace-Context

• Creates a relevant VS Code working environment

• Current workspace folder

• All version-controlled checkouts

• More in version control workshop!

• Opening from Landing screen

• Opens the root folder of Impact

• /home/jovyan/impact

• Change context from within VS Code

©2022 Modelon. All Rights Reserved.

JupyterLab

Interactive development environment

• File Explorer

• Notebook Editor

• File Editor

• Version Control

• Terminal

• Python Shell

©2022 Modelon. All Rights Reserved.

JupyterLab: Notebooks

Consists of Cells:

• Either Code or Markdown

• Cells executed in arbitrary order

• Default language is Python

Ideal for:

• Scripting and data visualization

Widgets:

• Simplify user interaction

• Makes Notebooks more “Appy”

©2022 Modelon. All Rights Reserved.

Access to Tools and Add-Ons

Access through apps-dropdown

• Welcome screen

• Inside Workspace

All tools have specific URLs (Bookmark)

©2022 Modelon. All Rights Reserved.

Why scripting?

For most MBSE workflows, automatization and

scripting functionality is essential.

• Pre-processing

• Post-processing

• Scale up of simulations/compilation:

• Model calibration

• Model verification

©2022 Modelon. All Rights Reserved.

How to script with Modelon Impact?

• Python is the recommended scripting language for

Modelon Impact

• Modelon develops and maintains a Python Module:

• Modelon Impact Client

• Installation through PIP

©2022 Modelon. All Rights Reserved.

Modelon Impact Python Client

Client Features:

• Authentication

• Adding and extracting artifacts from Modelon Impact

• Results, Models, Libraries etc.

• Perform Experiments on the Server

• Let Modelon Impact do the Simulation work, you worry about analysis

• Experiment definition format to set up batch simulations.

• Highly flexible, yet intuitive API

• Modelon Impact handles parallelization

• WEB API – communicates over the WEB with the Modelon Impact Server

©2022 Modelon. All Rights Reserved.

Scripting in the Cloud

• Modelon Impact Cloud comes with apps that enable scripting:

• JupyterLab

• VS Code

• Modelon Impact Client is pre-installed into these environments

• In the workshop mainly JupyterLab environment will be used

©2022 Modelon. All Rights Reserved.

Workshop

Getting started with scripting in Modelon Impact

©2022 Modelon. All Rights Reserved.

Workshop Logistics

• Open JupyterLab from the Apps-dropdown

• Download the workshop notebook from https://help.modelon.com

• Upload it to JupyterLab

• Follow along in the Notebook and add/edit your own code as we go along

https://help.modelon.com/

©2022 Modelon. All Rights Reserved.

Detailed Reference Slides

©2022 Modelon. All Rights Reserved.

General Workflow

When executing experiments on the Impact server with the Modelon Impact Client library for python, a general workflow could be outlined which will be covered in the

coming slides:

• Generate API-key using the API key manager

• Initialize the client object

• Set up the workspace

• Defining your analysis

• Set up model for analysis

• Analysis

• FMU based workflow

• Class name based workflow

• Setting up simulation series

• Operators

• Experiment extensions

• Executing

• Fetching/visualizing the result

©2022 Modelon. All Rights Reserved.

Generate API Keys

Impact Key:

• https://impact.modelon.cloud/user-redirect/impact/admin/keys

Jhub key:

• https://impact.modelon.cloud/hub/token

Requires the user to be logged in on the relevant Impact

instance.

The keys are linked to the current user

• This means when using the client, you can access

workspaces, models etc. stored in your user.

Key is only showed once, if lost it needs to be refreshed

(old key becomes inactive)

https://impact.modelon.cloud/user-redirect/impact/admin/keys
https://impact.modelon.cloud/hub/token

©2022 Modelon. All Rights Reserved.

The Client Object

• Initializes the connection between the client and the Impact domain

• Initializes connection with Impact server hosted at the given Impact URL

• Authenticates the session with API-key

• Key is stored in .impact folder in the user’s home folder for future access

• The user only need to give the api keys once on the same machine

©2021 Modelon

Methods include: • Workspace handlers

©2022 Modelon. All Rights Reserved.

Set up the workspace

• All operations on models needs to be done in scope of a workspace

• Instantiate a workspace object from the client object:

• Methods include:

• Workspace operations

• Getters for workspace resources

• Experiment execution

©2022 Modelon. All Rights Reserved.

Define analysis

• The workspace has several different analyses it can run on the models

• Referred to as “Custom Functions”

• Each Custom Function has a set of recommended options for compilation and

simulation:

• Modification is possible:

Methods available:

©2022 Modelon. All Rights Reserved.

Set up model for analysis

• Declare model from workspace to run analysis on:

• If the model exists only on the local machine, we can upload it first:

©2022 Modelon. All Rights Reserved.

Analysis

With the model set up we can start the experimentation/analysis

There are currently two workflows for this supported:

• FMU based workflow:

• Requires a first compilation step

• Experiment is defined on the compiled FMU

• Preferred when control over re-compilations are prioritized

• Class name-based workflow:

• Uses the model object directly to set up the experiment definition

• Allows for changing structural parameters (requires re-compilation)

• Preferred when re-compilation is needed in the experiment

©2022 Modelon. All Rights Reserved.

Analysis: Fmu based workflow - Compilation

• Compile the model using compiler options created earlier:

Optional arguments:• Returns reference to the FMU (runnable model) on the server side

©2022 Modelon. All Rights Reserved.

Analysis: Asynchronous programming - .wait()

• .compile is an asynchronous call to the server api.
• .wait() method is used to ensure that the compilation process reaches completion
• If wait() is not called Operation object is returned:

• is_complete() can be used to check the status of the compilation
• .wait() method returns a ModelExecutable object which represents the compiled model (FMU) on the server side

To illustrate how the wait() method functions we can use an Operation object instead to check the status of the operation.
When it is done the ModelExecutable object is created from the Operation object with the data() method.

?

©2022 Modelon. All Rights Reserved.

Analysis: Fmu based workflow – Experiment Definition

• From the generated model executable object, a new experiment definition object is created:

• Custom Function parameters could be changed with .with_parameters():
• For example, for ‘dynamic’ these are ‘start_time’ and ‘final_time’

• Modifiers to the model used in the experiment definition can be applied with .with_modifiers():

Optional arguments:

In the impact client experiments are declared using so called “experiment definition” objects. They contain all necessary information
for Impact to run a specific analysis on a specific model.

©2022 Modelon. All Rights Reserved.

Analysis: Class name-based workflow – Experiment Definition

• Similar call as in FMU based workflow (but on the model object):

• When used like this, the experiment definition can take arguments related to compilation:

©2022 Modelon. All Rights Reserved.

Setting up simulation series

There are two methods of setting up series of simulations:

• Operators:

• Uses an operator to declare parameter values

• Uses a full factorial combination of the parameter values

• Extensions

• Highly flexible and parametrizable way of declaring simulation series

• Every simulation case can be tailored to use specific options and parameter values

©2022 Modelon. All Rights Reserved.

Setting up simulation series: Operators

Instead of declaring an explicit parameter value for the modifier, we can instead

use a range of values.

This is done with an imported operator from the client package:

Currently supported operators are:

• Range:

• Choices:

©2022 Modelon. All Rights Reserved.

Setting up simulation series: Extensions

Advanced:

For more advanced schemes, extensions can be declared by instantiating

SimpleExperimentExtension objects. These can be parameterized with:

• custom function parameters

• solver and simulation options

• simulation log level

The extensions are given as a list argument to a “base”-experiment definition to
create a new experiment definition including all the extensions:

Simple approach:
The simplest approach is to use the experiment definitions .with_cases() method
with the modifiers as input:

Extensions provide a highly customizable interface of declaring simulation series.

Add variable modifiers for each of these cases using the .with_modifiers() method:

©2022 Modelon. All Rights Reserved.

Executing the experiment

When the experiment definition is finalized, it is passed to workspace objects .execute()

method:

.wait() is used for a similar purpose as in the compilation case.

Upon completion an Experiment object is returned:

• Info on how the execution went
• References to the results of the experiment cases

©2022 Modelon. All Rights Reserved.

Fetching/Visualizing the results

To fetch the case trajectories for a given experiment the

.get_cases() method can be called on the experiment.

It is a good idea to check if the cases did simulate successfully

by calling the .is_successful() method on the case.

The .get_trajectories() function is called on the individual case

objects to fetch the Result class object for that specific case.

To get a specific variable, the variable names of interest are

passed as index variables on the Result class object, for

example: res[‘time’]

©2022 Modelon. All Rights Reserved.

Accurate Simulations. Better Decisions.

