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Chapter 1. Introduction

The OPTIMICA Compiler Toolkit (OCT) isacomputational platform for model-based systems design leveraging
the open standards Modelica and the Function Mock-up Interface (FMI), see Section 1.2. It offers a versatile
environment for posing and solving dynamic and steady-state simul ation and optimization problemsthroughout the
product devel opment process. The OPTIMICA Compiler Toolkit comeswith aMaodelicacompiler with capabilities
beyond dynamic simulation by offering unique features for optimization and steady-state computations.

The OPTIMICA Compiler Toolkit builds on Python and MATLAB® for user-interaction. User-friendly scripting
APIs enable custom workflows to support flexible design flows that integrate sequences of computations.

In early stages of the design cycle, steady-state simulation and optimization support architectural exploration and
selection. During detailed design, model fidelity isincreased and transient simul ation and steady-state performance
computations are used to refine the design. Dynamic optimization is atool to assess limits of performance during
control systems design and is also a cornerstone in advanced control strategies such as non-linear model predic-
tive control. The OPTIMICA Compiler Toolkit unifies simulation and optimization for transient and steady-state
computations throughout the design process.

The OPTIMICA Compiler Toolkit offers the following main features:

* A Modelicacompiler compliant with the Modelicalanguage specification 3.4 (notable limitations: Synchronous
Language Elements and State Machines, cf. Chapter 20) and supporting both the Modelica Standard Library
version 3.2.3 build 3 aswell asthe Modelica Standard Library version 4.0.0. The compiler generates Functional
Mock-up Units (FMUs), including Model Exchange and Co-simulation as well as version 1.0 and 2.0 of the
FMI standard.

« Dynamic simulation algorithms for integration of large-scale and stiff systems. Algorithmsinclude CVode and
Radau.

« Dynamic optimization algorithms based on collocation for solving optimal control and estimation problems.
Dynamic optimization problems are encoded in Optimica, an extension to Modelica

A derivative-free model calibration algorithm to estimate model parameters based on measurement data.
 Support for generation of source code FMUSs.

» A non-linear solver for solving large-scale systems of equations arising, e.g., in steady-state applications. Effi-
cient and robust steady-state problem formulation is enable by Hand Guided Tearing, which enables user spec-
ified selection of residuals and iteration variables.

 Support for encrypted and licensed Modelicalibraries.

 Support for state-of-the-art numerical algorithms for dynamic optimization, notably the HSL solver MA57 that
provides improved robustness and performance.
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« A compiler API is available to extract information, e.g., packages, models, parameters and annotations, from
Modelicalibraries.

» Scripting APIs in Python and MATLAB® are available to script automation of compilation, simulation and
optimization of Modelicaand FMI models.

The OPTIMICA Compiler Toolkit is based on OCT technology.

1.1. License Options

The OPTIMICA Compiler Toolkit is available in two versions:

e OPTIMICA Compiler Toolkit Base version which supports compilation of FMUs and dynamic simulation in
Python and MATLAB® (with the addition of FMI Toolbox for MATLAB®) as well as dynamic optimization
based on open source solvers.

e OPTIMICA Compiler Toolkit Full version which in addition supports steady-state computations, including
Hand-Guided Tearing in Modelica models and non-linear solver integrationin MATLAB®.

In addition, there are two additional license options available:
A license option for the linear solver MAS57 for industrial grade dynamic optimization applications.
* A license option for generation of source code FMUSs.

The OPTIMICA Compiler Toolkit isavailable for end users aswell asfor integration in software and custom tool-
chains.

1.2. Modelica and the Functional Mock-up Interface

Modelicais alanguage where a system can be modeled by connecting components across many domains such as
thermodynamics and automatic control. The components can be rapidly assembled by reusing componentsthat are
already tested and available in arich set of libraries. The Modelica language and the Modelica Standard Library
are actively developed by the Modelica Association, see http://www.modelica.org.

M odelica components are based on a mathematical model defined by hybrid differential-algebraic equations. This
means that the model of the system can contain differential equations and also leverage other constraints on the
variables, such as conservation of flow, aswell as capture discrete events that can occur during simulation.

The easy reuse of components inherent to the language enables a clear separation of the equations that concern a
modeler when looking at a component. The components are connected through well-defined connectorsto ensure
that only compatible components can be connected to each other. This mean that we can model asystem by picking
and choosing its components and then declare which components are connected without concerning ourselveswith
how they are connected.
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To ease the exchange of components between users and tools, the components can be packaged in a Functional
Mock-up Unit. A Functional Mock-up Unit(FMU) is a binary, such as a Modelica component in compiled form,
that complies with the Functional Mock-up Interface standard. Any binary that complies with the standard can
be used by tools that implement it. The Functional Mock-up Interface(FMI) standard specifies an interface for
connecting componentsthat istool -independent. Thismeansthat any tool that implementsthe FMI standard can use

the component to solve a simulation problem. It is maintained by the Modelica Association, see http://www.fmi-
standard.org.

Components can be distributed in FMU form without having to reveal their source code. The public connectors and
parameters of the componentsaredeclared inthe FMU so that it can be simulated or connected to other components.
The FMU can include only the model, which isreferred to asan FMU for Model Exchange (FMU-ME). It can also
include a solver and is then referred to asa FMU for Co-Simulation (FMU-CS).
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Chapter 2. Installation

2.1. General Prerequisites

2.1.1. Supported platforms
The OPTIMICA Compiler Toolkit can be installed on the following platforms:
* Windows 10

* CentOS 7, 64-bit

2.1.2. C compiler

A C compiler isrequired by the Modelica compiler provided by OCT.

The supported C compilers for OCT are:

e TDM-GCC (5.1.0) is shipped with the OCT installer.

e Microsoft Visual C++ 2010 (Visual C++ 10.0), express or professional

e Microsoft Visual C++ 2012 (Visual C++ 11.0), express or professional

* Microsoft Visual C++ 2015 (Visual C++ 14.0), express, community or professional
* Microsoft Visual C++ 2017 (Visual C++ 15.0), express, community or professional
e Microsoft Visual C++ 2019 (Visual C++ 16.0), community or professional

Note that Microsoft Visual C++ 2010 express can't be used to compile 64 bit FMUs. Also note that the C++
compiler is not installed by default when installing Microsoft Visual Studio. It needs to be chosen manually.

2.2. Installation of OPTIMICA Compiler Toolkit

Toinstall the OPTIMICA Compiler Toolkit start by double-clicking ocT- X. X. exe and follow the instructions of
the setup wizard.
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Welcome to the OCT Setup Wizard

This wizard will guide you through the installation of OCT.

It is recommended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having te reboot your
computer.

Click Mext to continue.

I Next > ‘I Cancel

Figure 2.1 Start page of the installation wizard.

When the wizard has finished OCT has been installed and the Python interface is ready to be used. All Python
packages and other thirdparty dependencies are listed in Section C.1.To be able run from MATLAB®, follow the
instructions in Section 2.2.1.

2.2.1. Setting up the MATLAB® Interface

Make sure the prerequisites defined below are met before enabling the toolbox as described in Section 2.2.1.2.
2.2.1.1. Prerequisites

Supported MATLAB® versions

The OCT Modelica toolbox for MATLAB® is supported only for 64 bit versions of MATLAB® from R2014b
(MATLAB 8.4) and later. The OCT Modelica toolbox for MATLAB® relies on FMI Toolbox, see the section
called “FMI Toolbox”, and hence on its supported MATLAB® versions.

FMI Toolbox

To be able to solve steady-state problems as well as smulate dynamic systems in MATLAB® FMI Toolbox is
required. Supported versions are FMI Toolbox 2.4 and newer.

(Optional) Dymola

Dymola 2014 FDO1 or later is required to use the MATLAB® interface for the Dymola Modelica compiler.
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2.2.1.2. Enabling the toolbox in MATLAB®

First, thetoolbox must be added to the MATLAB® search path. Thisonly needsto be done once, see Section 2.2.1.3
for instructions.

Before using the toolbox functions, an initialization script, oct . i ni t OCT, must be run. This must be done every
time a new MATLAB® session is started, see Section 2.2.1.4 for more details.

2.2.1.3. Adding the toolbox to MATLAB® search path
Follow these steps to enable the OCT Modelicatoolbox in MATLAB®.
1. Start MATLAB®.

2. Open the Set Path diaog box, either from the menu or ribbon in the GUI or by typing pat ht ool inthe MAT-
LAB® command window.

3. Select the button Add folder ...

4. Browse to the OCT Modelica toolbox for MATLAB® installation folder (the folder where the OPTIMICA
Compiler Toolkit was installed and therefrom "i nst al | / MATLAB").

5. Select the "t ool box" folder found in " MATLAB" and click OK followed by Save and Close.

2.2.1.4. Initializing the toolbox in MATLAB®

In order to use the toolbox, the initialization script oct . i ni t OCT must be executed at MATLAB® startup. The
script adds some JAR filesthat are needed to run the toolbox to the Java class pathin MATLAB®. Since the script
must be run for every startup of MATLAB®, it isrecommended to add the call to oct . i ni t OCT either to your user
specific st art up. mfile or system-wide mat | abr c. mfile. Inthe MATLAB® console, type user pat h to query the
directory in which startup.m should be located. Notethat ‘cl ear’ iscalled as apart of the oct . i ni t OCT script.

Theoct . i ni t OCT script will throw an exception if a JAR file can not be found.

If the DYMOLA_|I NSTALL_DI R environment variable has not been set (see Section 7.2.1.2 for an example how to
do this), the JAR file needed for the Dymola compilation will not be loaded. In this case, you will see a warning
in the MATLAB® command window. Before the environment variable DYMOLA | NSTALL_DI R has been set, it
is not possible to use Dymola for the compilation. Note that the oct . i ni t OCT script must always be run after
DYMOLA_| NSTALL_DI R is set. Therefore, when using Dymola it is recommended that the environment variable
DYMOLA_| NSTALL_DI Risalso set in your user specific st ar t up. mfile or system-wide mat | abr c. mfile before the
cal tooct . i nitOCT.

The content of ast art up. mfile that enables Dymola compilation and runs the initialization script oct . i ni t OCT
could look like:
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setenv(' DYMOLA INSTALL DIR ,' C:\ Program Fil es (x86)\Dynol a 2014 FDO1')
oct.init OCT




Chapter 3. Getting started

This chapter isintended to give a brief introduction to using the OCT Python packages and the MATLAB® inter-
faceand will therefore not go into any details. Please refer to the other chapters of this manual for more information
on each specific topic.

3.1. The OCT Python packages

The OCT Python interface enables users to use Python scripting to interact with Modelica and Optimica models.
Theinterface consists of three packages:

* PyModelica Interface to the compilers. Compile Modelica and Optimica code into model units, FMUs. See
Chapter 4 for more information.

* PyFMI Work with models that have been compiled into FMUs (Functional Mock-up Units), perform simula-
tions, parameter manipulation, plot results etc. See Chapter 5 for more information.

« PyJMI Work with models that are represented in symbolic form based on the automatic differentiation tool
CasADi. This package is mainly used for solving optimization problems. See Chapter 6 for more information.

3.1.1. Starting a Python session

There are three different Python shells available under the OCT start menu.

» Python Normal command shell started with Python.

 |Python Interactive shell for Python with, for example, code highlighting and tab completion.
 pylab IPython shell which aso loads the numeric computation environment PyL ab.

It is recommended to use either the I Python or pylab shell.

3.1.1.1. Running an example

The Python packages pyf i and pyj mi each contain afolder called exanpl es in which there are several Python
exampl e scripts. The scripts demonstrate compilation, loading and simulation or optimization of models. The cor-
responding model files are located in the subdirectory fi | es. The following code demonstrates how to run such
an example. First a Python session must be started, see Section 3.1.1 above. The example scripts are preferably
run in the pylab Python shell.

The following code will run the RLC example and plot some results.

# Inport the RLC exanpl e
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from pyj m.exanples inport RLC

# Run the RLC exanple and plot results
RLC. run_deno()

Open RLC. py in atext editor and look at the Python code to see what happens when the script isrun.

3.2. The OCT MATLAB® Interface

The OCT compiler can be used from within MATLAB®, both for compilation of dynamic models as well as
models intended for steady-state initialization, see Chapter 7.

Dynamic models can be simulated in MATLAB® through FMI Toolbox, see Chapter 8. A basic example for
solving steady-state problems is provided in Section 3.2.1, further details are found in Chapter 9.

3.2.1. Running a steady-state example

Ini nstal | / MATLAB/ exanpl es/ nl esol / exanpl e_Si npl eSt eady St at e. man exampleisgiven of how to compile
and solve a simple steady state model.

Open thefilein the MATLAB® Editor and run the example. The solver trace, i.e., the steps of the Newton solver,
will be displayed in the command window. The compiled FMU will be present in the same folder as the example
file.

>> exanpl e_Si npl eSt eady St at e

Model nanme.........................: Exanpl eModel s. Si npl eSt eadySt at e

Nunmber of iteration variables......: 1

Nurmber of discontinuity switches...: 2

Switch iteration 1

iter res_norm max_res: ind nlb nab | ambda_max: ind | anbda
1Js 1.0000e+00 1.0000e+00: 1 0 0 2.0000e-01: 1r 2. 0000e-01
2 8. 0000e-01 8. 0000e-01: 1 0 0 2.0000e-01: 1r 2.0000e-01
3 6. 4000e- 01 6.4000e- 01: 1 0 0 2.0000e-01: 1r 2. 0000e-01
4 5.1200e-01 5.1200e-01: 1 0 0 2.0000e-01: 1r 2.0000e-01
5 4.0960e-01 4. 0960e-01: 1 0 0 2.4414e-01: 1r 2.4414e-01
6 3.0960e-01 3.0960e-01: 1 0 0  3.2300e-01: 1r 3.2300e-01
7 2.0960e-01 2.0960e-01: 1 0 0 4.7710e-01: 1r 4.7710e-01
8 1.0960e-01 1.0960e-01: 1 0 0 9.1241e-01: 1r 9.1241e-01
9 9. 6000e- 03 9. 6000e- 03: 1 0 0 1.0000e+00 1. 0000e+00
10 0. 0000e+00 0. 0000e+00: 1

iter res_norm max_res: ind nlb nab | ambda_max: ind | anbda
1s 0. 0000e+00 0. 0000e+00: 1

Switch iteration 2

iter res_norm max_res: ind nlb nab | ambda_nax: ind | anbda
1 6.6667e-01 6.6667e-01: 1 0 0  3.0000e-01: 1r 3. 0000e-01
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2 6. 0000e- 01 6.0000e- 01: 1 0 0  3.3333e-01: 1r 3.3333e-01
3 5.3333e-01 5.3333e-01: 1 0 0 3.7500e-01: 1r 3. 7500e-01
4 4.6667e-01 4.6667e-01: 1 0 0 4.2857e-01: 1r 4.2857e-01
5 4.0000e-01 4.0000e-01: 1 0 0 5.0000e-01: 1r 5. 0000e-01
6 3.3333e-01 3.3333e-01: 1 0 0 6.0000e-01: 1r 6. 0000e-01
7 2.6667e-01 2.6667e-01: 1 0 0 9.0000e-01: 1r 9. 0000e-01
8 1.8667e-01 1.8667e-01: 1 0 0 1. 0000e+00 1. 0000e+00
9 1.2444e-01 1.2444e-01: 1 0 0 1. 0000e+00 1. 0000e+00
10J 8.2963e-02 8.2963e-02: 1 0 0 1. 0000e+00 1. 0000e+00
11 2.8553e-10 -2.8553e-10: 1 0 0 1. 0000e+00 1. 0000e+00
12 0. 0000e+00 0. 0000e+00: 1

Switch iteration 3

iter res_norm max_res: ind nlb nab | ambda_nax: ind | anbda
1 6.6667e-01 -6.6667e-01: 1 0 0 2.0000e-01: 1r 2. 0000e-01
2 2.6667e-01 -2.6667e-01: 1 0 0 4.0000e-01: 1r 4.0000e-01
3 5.3333e-02 5.3333e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
4 4.2667e-02 -4.2667e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
5 3.4133e-02 3.4133e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
6 2.7307e-02 -2.7307e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
7 2.1845e-02 2.1845e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
8 1.7476e-02 -1.7476e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
9 1.3981e-02 1.3981e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
10J 1.1185e-02 -1.1185e-02: 1 0 0 1. 0000e+00 1. 0000e+00
11 7.7968e-11 7.7968e-11: 1 0 0 1. 0000e+00 1. 0000e+00
12 7.4015e-17 7.4015e-17: 1

Nurmber of function eval uations: 56
Nurmber of jacobian eval uations: 3
Sol ver finished

Total tine in solver: 0.56 s
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Chapter 4. Working with Models In
Python

4.1. Introduction to models

Modelica and Optimica models can be compiled and loaded as model objects using the OCT Python interface.
These model objects can be used for both simulation and optimization purposes. This chapter will cover how to
compile Modelica and Optimica models, set compiler options, load the compiled model in a Python model object
and use the model object to perform model manipulations such as setting and getting parameters.

4.1.1. The different model objects in OCT

There are severa different kinds of model objects that can be created with OCT: FMUMbdel ( ME/ CS) ( 1/ 2)
(i.e. FMUModelME1, FMUModelCS1, FMUModelME2, and FMUModel CS2) and Opt i i zat i onPr obl em The
FMUMbdel (ME/ CS) (1/ 2) is created by loading an FMU (Functional Mock-up Unit), which is a compressed file
compliant with the FMI (Functional Mock-up Interface) standard. The Opt i ni zat i onPr obl emis created by trans-
ferring an optimization problem into the CasADi-based optimization tool chain.

FMUSs are created by compiling Modelica models with OCT, or any other tool supporting FMU export. OCT
supports export of FMUs for Model Exchange (FMU-ME) and FMUs for Co-Simulation (FMU-CS), version 1.0
and 2.0. Import of FMU-CSversion 2.0 is a so supported. Generated FMUs can be loaded in an FMUMbdel ( ME/ CS)

(1/ 2) objectinPython and then be used for simulation purposes. Optimicamaodels can not be compiled into FMUs.

Opt i mi zat i onPr obl emobjects for CasADi optimization do not currently have a corresponding file format, but
are transferred directly from the OCT compiler, based on Modelica and Optimica models. They contain a sym-
bolic representation of the optimization problem, which is used with the automatic differentiation tool CasADi
for optimization purposes. Read more about CasADi and how an Opt i ni zat i onPr obl emobject can be used for
optimization in Section 6.5 in Chapter 6.

4.2. Compilation

This section brings up how to compile a model to an FMU-ME / FMU-CS. Compiling a model to an FMU-ME /
FMU-CS will be demonstrated in Section 4.2.1 and Section 4.2.2 respectively.

For more advanced usage of the compiler functions, there are compiler options and arguments which can be mod-
ified. These will be explained in Section 4.2.4.

4.2.1. Simple FMU-ME compilation example

The following steps compile amodel to an FMU-ME version 2.0:

11
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1. Import the OCT compiler function conpi I e_f mu from the package pyrodel i ca.
2. Specify the model and model file.
3. Perform the compilation.

Thisis demonstrated in the following code example:

# Inport the conpiler function
from pynodel i ca i nport conpile_fnu

# Specify Modelica nodel and nodel file (.np or .nop)
nodel _nane = ' nyPackage. myModel '
mo_file = 'nyMdel File.no'

# Conpil e the npdel and save the return argunent, which is the file nane of the FMJ
ny_fmu = conpil e_fmu(nodel _nane, nmo_file)

Thereisacompiler argumentt ar get that controlswhether the model will be exported asan FMU-ME or FMU-CS.
The default isto compilean FMU-ME, sot ar get does not need to be set in this example. The compiler argument
ver si on specifiesif the model should be exported asan FMU 1.0 or 2.0. Asthe default isto compilean FMU 2.0,
ver si on does not need to be set either in this example. To compile an FMU 1.0, ver si on should besetto* 1. 0' .

Once compilation has completed successfully, an FMU-ME 2.0 will have been created on the file system. The
FMU is essentially a compressed file archive containing the files created during compilation that are needed when
instantiating a model object. Return argument for conpi | e_f mu is the file path of the FMU that has just been
created, thiswill be useful later when we want to create model objects. More about the FMU and loading models
can be found in Section 4.3.

In the above example, the model is compiled using default arguments and compiler options - the only arguments

set are the model class and file name. However, conpi | e_f mu has several other named arguments which can be
modified. The different arguments, their default values and interpretation will be explained in Section 4.2.4.

4.2.2. Simple FMU-CS compilation example

The following steps compiles amodel to an FMU-CS version 2.0:

1. Import the OCT compiler function conpi | e_f mu from the package pyrodel i ca.
2. Specify the model and model file.

3. Settheargumenttarget = 'cs'

4. Perform the compilation.

Thisis demonstrated in the following code example:

12
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# Inport the conpiler function
from pynodelica inport conpile_fnu

# Specify Modelica nodel and nodel file (.np or .nop)
nodel _nane = ' nyPackage. myModel '
mo_file = 'nyMdel File.no'

# Conpil e the npdel and save the return argunent, which is the file nane of the FMJ
ny_fmu = conpil e_fmu(nodel _nane, no_file, target='cs')

In a Co-Simulation FMU, the integrator for solving the system is contained within the FMU. With an FMU-CS
exported with OCT, four different solvers are supported: CVode, Explicit Euler, Runge-Kutta (2nd order) and
Radaub.

4.2.3. Compiling from libraries

The model to be compiled might not bein astandalone. no file, but rather part of alibrary consisting of adirectory
structure containing several Modelicafiles. In this case, the file within the library that contains the model should
not be given on the command line. Instead, the entire library should to added to thelist of librariesthat the compiler
searches for classes in. This can be done in several ways (here library directory refers to the top directory of the
library, which should have the same name as the top package in the library):

 Giving the path to the library directory in the fi 1 e_name argument of the compilation function. This allows
adding a specific library to the search list (as opposed to adding all libraries in a specific directory).

» Set the directory containing a library directory via the keyword argument named nodel i capat h of the com-
pilation function. This alows for adding several libraries to the search list. For example if nodel i capat h=C:
\ MyLi bs, then the compiler sstsMODELICAPATH toC: \ MyLi bs and all librarieswithin are added to the search
list during compilation.

The Modelica Standard Library (MSL) that isincluded in the installation is loaded by default when starting the
OCT Python shell. The version of MSL that is loaded is based on the compiler option named msl_version or any
existing uses annotations within the model being compiled.

The Python code example below demonstrates these methods:

# Inport the conpiler function
from pynodel i ca inport conpile_fnu

# Conpil e an exanpl e nodel fromthe MSL
frmul = conpile_fmu(' Model i ca. Mechani cs. Rot ati onal . Exanpl es. First')

# Conpil e an exanpl e nodel utilizing the nodelicapath keyword argunent assum ng
# the library M/Library is located in C/MLibs, i.e. C/MLibs/MLibrary exists
frmu2 = conpile_fmu(' M/Library. M/\Mbdel , nodelicapath = 'C. /MLibs")

# Conpile a nodel fromthe library M/Library, located in C\MLibs
frmud = conpil e_fru(' MyLi brary. MyModel ', ' C./ M/Li bs/ M/Li brary"')
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4.2.4. Compiler settings

The compiler function arguments can be listed with the interactive help in Python. The arguments are explained
in the corresponding Python docstring which is visualized with the interactive help. This is demonstrated for
conpi | e_f mu below. The docstring for any other Python function for can be displayed in the same way.

4.2.4.1. compile_fmu arguments

The conpi | e_f mu arguments can be listed with the interactive help.

# Display the docstring for conpile frmu with the Python conmand ' hel p'
from pynodel i ca i nport conpile_fnu

hel p(conpi | e_f nmu)

Hel p on function conpile_fmu in nodul e pynodel i ca. conpil er:

conpi l e_fru(cl ass_nane, file_name =[], conpiler = "auto', target = 'ne', version ='2.0",
platform= "auto', conpiler_options = {}, conpile_to ="'."', conpiler_log_|evel
= 'warning',
nodel i capath = '', separate_process = True, jvmargs = ''):

Conpi |l e a Model i ca nodel to an FMJ.

A nodel cl ass name nust be passed, all other argunments have default val ues.
The different scenarios are:

* Only class_nane is passed:
- Class is assuned to be in MODELI CAPATH.

* class_nane and file_nane is passed:

- file_nanme can be a single path as a string or a list of paths
(strings). The paths can be file or library paths.

- Default conpiler setting is 'auto' which neans that the appropriate
conpiler will be selected based on nodel file ending, i.e.
Model i caConpiler if a .no file and Optim caConpiler if a .nop file is
found in file_nanme |ist.

The conpiler target is 'me' by default which neans that the shared
file contains the FM for Mdel Exchange API. Setting this paraneter to
‘cs' will generate an FMJ containing the FM for Co-Sinmul ati on API.

Par aneters: :

cl ass_nane --
The nane of the nodel cl ass.

file_name --
A path (string) or paths (list of strings) to nodel files and/or
libraries.
If file does not exist, an exception of type
pynodel i ca. conpi | er _excepti ons. PyModel i caFi |l eError is raised.
Default: Enpty list.
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conpi ler --

The conpiler used to conpile the nodel. The different options are:
- 'auto': the conpiler is selected automatically dependi ng on

file ending
- 'nodelica': the MdelicaConpiler is used
- 'optimca' : the OptimcaConpiler is used
Defaul t: 'auto'

target --

Conpi l er target. Possible values are 'ne', 'cs' or 'ne+cs'.

Default: 'nme'

version --
The FM version. Valid options are '1.0' and '2.0'.
Default: '2.0'

platform --

Set platform controls whether a 32 or 64 bit FMJ is generated. This

option is only avail able for W ndows.
Valid options are:

- 'auto': platformis selected automatically. This is the only

valid option for |inux and darw n.
- 'win32': generate a 32 bit FMJ
- 'wWin64': generate a 64 bit FMJ
Default: 'auto'

conpi |l er _options --
Options for the conpiler.
Defaul t: Enpty dict.

conpile_to --

Specify target file or directory. If file, any intermediate directories
will be created if they don't exist. Furthernore, the Mdelica nodel will
be renaned to this nanme. If directory, the path given nust exist and the nodel

will keep its original nane.
Default: Current directory.

conpiler_log_|level --

Set the logging for the conpiler. Takes a comma separated list with

|l og outputs. Log outputs start with a flag :'warning'/'w,

"error'/'e', 'verbose'/'v', 'info'/'i' or 'debug'/'d'. The |og can

be witten to file by appending a colon and file nane.

Exanpl e: conpiler_l og_| evel = d: debug.txt', sets the log |evel
the | og

to a file nanmed ' debug.txt"'.
Defaul t: 'warning'

nodel i capath --

to debug and wites

Set the MODELI CAPATH to use. Depending on conpiler options one or

nore versions of MSL nay be added to it as well.
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separ at e_process --
Run the conpilation of the nmbdel in a separate process.
Checks the environment variables (in this order):
1. SEPARATE_PROCESS JVM
2. JAVA _HOVE
to locate the Java installation to use.
For exanple (on Wndows) this could be:
SEPARATE_PROCESS JVM = C:\ Program Fil es\ Java\j dk1. 6.0 _37
Default: True

jvmargs --
String of arguments to be passed to the JVM when conpiling in a
separate process.
Default: Enpty string

Returns::

A conpil ation result, represents the name of the FMJ whi ch has been
created and a list of warnings that was raised.

4.2.4.2. Compiler options

Compiler options can be modified using the conpi I e_f mu argument conpi | er _opti ons. Thisis shown in the
example below.

# Conpile with the conpiler option 'enable_variable_scaling' set to True

# | nport the conpiler function
from pynodel i ca inport conpile_fnu

# Specify nodel and nodel file
nodel _nane = ' nmyPackage. myModel '
mo_file = 'nyMdel File.no'

# Conpile
ny_fmu = conpil e_fmu(nodel _nane, nmo_file,
conpi | er _opti ons={"enabl e_vari abl e_scal i ng": True})

There are four types of options: string, real , i nteger and bool ean. The complete list of options can be found
in Appendix B.

4.3. Loading models

Compiled models, FMUs, are loaded in the OCT Python interface with the FMUMbdel ( ME/ CS) (1/2) class from
thepyf mi module, while optimization problemsfor the CasADi-based optimization aretransferred directly into the
Opt i mi zat i onPr obl emclassfromthepyj ni module. Thiswill be demonstrated in Section 4.3.1 and Section 4.3.2.
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The model classes contain many methods with which models can be manipulated after instantiation. Among the
most important methods arei ni ti al i ze and si nul at e, which are used when simulating. These are explained in
Chapter 5 and Chapter 6. For more information on how to use the OptimizationProblem for optimization purposes,
see Chapter 6. The more basic methods for variable and parameter manipulation are explained in Section 4.4.

4.3.1. Loading an FMU

AnFMU file can beloaded in OCT with the method | oad_f nu in the pyf ni module. The following short example
demonstrates how to do thisin a Python shell or script.

# I nport load _frmu from pyfm
frompyfm inport |oad_fmu
nyModel = | oad_frmu(' myFMJ. f nu' )

| oad_f mu returns a class instance of the appropriate FM U type which then can be used to set parameters and used
for ssimulations.

4.3.2. Transferring an Optimization Problem

An optimization problem can be transferred directly from the compiler in OCT into the class opt i i zat i onPr ob-
I emin the pyj ni module. The transfer is similar to the combined steps of compiling and then loading an FMU.
The following short example demonstrates how to do thisin a Python shell or script.

# | nport transfer_optim zation_probl em
frompyjm inmport transfer_optim zation_problem

# Specify Modelica nodel and nodel file
nodel _nane = ' nmyPackage. myModel '
no_file = "' myMdel File.no'

# Conpile the nodel, return argument is an Optim zati onProbl em
nyModel = transfer_optim zati on_probl em( nodel _nane, no_file)

4.4. Changing model parameters

Model parameters can be altered with methods in the model classes once the model has been loaded. Some short
examplesin Section 4.4.1 will demonstrate this.

4.4.1. Setting and getting parameters

The model parameters can be accessed via the model class interfaces. It is possible to set and get one specific
parameter at atime or awholelist of parameters.

The following code example demonstrates how to get and set a specific parameter using an example FMU model
from the pyj i . exanpl es package.

# Conpile and | oad the nodel
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from pynodelica i nport conpile_ fnu

frompyfm inport |oad_fnmnu

ny_fmu = conpile fmu(' RLC Circuit',' RLC Circuit.non')
rlc_circuit = |oad_f mu(ny_fnmu)

# Get the value of the paraneter 'resistor.R and save the result in a variable
"resistor_r'
resistor_r =rlc_circuit.get('resistor.R)

# Gve 'resistor.R a new val ue
resistor r = 2.0
rlc_circuit.set('resistor.R, resistor_r)

The following example demonstrates how to get and set a list of parameters using the same example model as
above. The model is assumed to aready be compiled and loaded.

# Create a list of paraneters, get and save the corresponding values in a variable 'val ues'
vars = ['resistor.R, 'resistor.v', 'capacitor.C, 'capacitor.v']
values = rlc_circuit.get(vars)

# Change sone of the val ues
val ues[0] = 3.0

values[3] = 1.0
rlc_circuit.set(vars, val ues)

4.5. Debugging models

The OCT compilers can generate debugging information in order to facilitate localization of errors. There arethree
mechanisms for generating such diagnostics: dumping of debug information to the system output, generation of
HTML code that can be viewed with a standard web browser or logsin XML format from the non-linear solver.

4.5.1. Compiler logging

The amount of logging that should be output by the compiler can be set with the argument conpi | er _1 og_I evel
to the compile-functions (conpi | e_f mu and alsot r ansf er _opti mi zat i on_pr obl em). Theavailablelog levelsare
"war ni ng' (default), " error','info', verbose' and' debug' which can aso bewrittenas'w ,"e',"i"', v'
and' d' respectively. The following example demonstrates setting the log level to ' i nf o' :

# Set conpiler log level to "info'
conpi l e_frmu(' myModel ', 'nyModel s.no', conpiler_log_|evel="info')

Thelog is printed to the standard output, normally the terminal window from which the compiler isinvoked.

The log can also be written to file by appending the log level flag with a colon and file name. Thisis shown in
the following example:

# Set conpiler log level to info and wite the log to a file |og.txt
conpi | e_fmu(' myModel ', 'nyModel s. mo', conpiler_log |evel="i:log.txt")
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It is possible to specify several log outputs by specifying a comma separated list. The following example writes
log warnings and errors (log level ' war ni ng' or ' w ) to the standard output and a more verbose logging to file
(loglevel "info or'i'):

# Wite warnings and errors to standard output and the log with log level info to | og.txt
conpi | e_fmu(' myModel ', ' nyModel s. o', conpiler_log level="wi:log.txt")

4.5.2. Runtime logging
Runtime logging refers to logging of data during simulation, this section outlines some methods to retrieve smu-
lation data from an FMU.

4.5.2.1. Setting log level

Many eventsthat occur inside of an FMU can generate |og messages. Thelog messages from the runtime are saved
in afilewith the default name <FMU name>_1 og. t xt . A log file name can also be supplied when loading an FM U,
thisis shown in the example below:

# Load node
nodel = |oad_fmu(fmu_nanme, |og_file_nanme=" MyLog.txt"')

How much information that is output to the log file can be controlled by setting the 1 og_I evel argument
to I oad_fmu. 1 og_l evel can be any number between 0 and 7, where O means no logging and 7 means the
most verbose logging. The log level can also be changed after the FMU has been loaded with the function
set _l og_l evel (I evel ). Setting thel og_I evel isdemonstrated in the following example:

# Load nodel and set log level to 5
nmodel = | oad_f mu(fmu_nane, |og_| evel =5)

# Change log level to 7
nodel . set _| og_| evel (7)

If theloaded FMU isan FMU exported by OCT, the amount of logging produced by the FMU can also be altered.
Thisisdone by setting the parameter _|1 og_I evel inthe FMU. Thislog level rangesfrom 0to 7 where O represents
the least verbose logging and 7 the most verbose. The following example demonstrates this:

# Load nodel (with default log |evel)
nmodel = | oad_f mu(f nmu_nane)

# Set anmount of | oggi ng produced to the nbst verbose
nodel . set (' _l og_l evel ', 6)

# Change log level to 7 to be able to see everything that is being produced
nodel . set _| og_I| evel (7)

4.5.2.2. Interpreting logs from FMUs produced by OCT

In OCT, information islogged in XML format, which ends up mixed with FMI Library output in the resulting log
file. Example: (the following examples are based on the example pyj mi . exanpl es. | ogger _exanpl e.)
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1 ...

2 FML: nodule = FMCAPI, log level =5: Calling fmlInitialize

3 FML: nodule = Mdel, log level = 4: [INFQ [FMJ status: OK] <Equati onSol ve>Mbde
equat i ons eval uati on i nvoked at<val ue name="t"> 0. 0000000000000000E+00</ val ue>
4 FML: nodule = Model, log level = 4: [INFQ [FMJ status: K]

<Bl ockEvent I terati ons>Starting bl ock (local) event iteration at<val ue name="t">
0. 0000000000000000E+00</ val ue>i n<val ue nanme="bl ock">0</val ue>

5 FML: nodule = Model, log level = 4: [INFQ[FMJ status: K] <vector nane="ivs">
0. 0000000000000000E+00, 0. 0000000000000000E+00, 0. 0000000000000000E+00</
vect or >
6 FML: nodule = Model, log level = 4: [INFQ[FMJ status: OK] <vector nane="sw tches">
0. 0000000000000000E+00, 0. 0000000000000000E+00, 0. 0000000000000000E
+00, 0. 0000000000000000E+00</ vect or >
7 FML: nodule = Model, log level = 4: [INFQ[FMJ status: K] <vect or
name="bool eans" ></ vect or >
8 FML: nodule = Mdel, log level = 4: [INFQ[FMJ status: K] <Bl ockl terati on>Loca
iteration<val ue name="iter">1</val ue>at <val ue name="t"> 0. 0000000000000000E+00</
val ue>
9 FML: nodule = Model, log level = 4: [INFQ[FMJ status: K]
<Jacobi anUpdat ed><val ue nane="bl ock" >0</val ue>
10 FM L: nodule = Model, log level = 4: [INFQ [FMJ status: K] <matrix
nanme="j acobi an" >
11 FM L: nodule = Model, log level = 4: [INFQ[FMJ status: OK]
-1. 0000000000000000E+00, 4. 0000000000000000E+00, 0. 0000000000000000E+00
12 FM L: nodule = Model, log level = 4: [INFQ[FMJ status: OK]
-1. 0000000000000000E+00, -1. 0000000000000000E+00, -1. 0000000000000000E+00
13 FM L: nodule = Model, log level = 4: [INFQ[FMJ status: OK]
-1. 0000000000000000E+00, 1. 0000000000000000E+00, -1. 0000000000000000E+00
14 FM L: nodule = Model, log level = 4: [INFQ [FMJ status: K] </matrix>
15 FM L: nodule = Model, log level = 4: [INFQ[FMJ status: OK] </ Jacobi anUpdat ed>

16 ...

The log can be inspected manually, using general purpose XML tools, or parsed using the tools in
pyf m . common. | og. A pure XML file that can be read by XML tools can be extracted with

# Generate an XML file fromthe sinmulation | og that was generated by nodel . simul ate()
nodel . extract _xm _| og()

The XML contents can also be parsed directly:

# Parse an XM | og
log = pyfm.comon. | og. parse_fnu_xm _| og(log _file_nane)

I og Will correspond to the top level log node, containing all other nodes. Log nodes have two kinds of children:
named (with aname attribute in the XML file) and unnamed (without).

» Named children are accessed by indexing with astring: node[ ' t' ], or simply dot notation: node. t .

» Unnamed children are accessed as alist node. nodes, or by iterating over the node.
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Thereis also a convenience function gat her _sol ves to extract common information about equation solvesin the
log. This function collects nodes of certain types from the log and annotates some of them with additional named
children. The following example is from pyjmi.examples.logger_example:

1 # Parse the entire XM | og

2 log = pyfm.common. | og. parse_frmu_xm _| og(l og_fil e_name)
3 # Gather information pertaining to equation sol ves

4 sol ves = pyjm .| og. gat her _sol ves(I| og)

5

6 print(' Nunber of solver invocations:', | en(sol ves))

7 print('Time of first solve:', sol ves[0] . 1)

8 print (' Nunber of block solves in first solver invocation:', |en(solves[O0].block_sol ves)

9 print('Names of iteration variables in first block solve:'
sol ves[ 0] . bl ock_sol ves[ 0] . vari abl es))

10 print('Mn bounds in first block solve:',

sol ves[ 0] . bl ock_sol ves[ 0] . m n)

11 print(' Max bounds in first block solve:',

sol ves[ 0] . bl ock_sol ves[ 0] . max)

12 print('Initial residual scaling in first block solve:',
sol ves[ 0] . bl ock_sol ves[ 0] .initial _residual _scaling)

13 print (' Nunber of iterations in first block solve:'

| en(sol ves[ 0] . bl ock_sol ves[ 0] .iterations)

14 print('\n")

15 print('First iteration in first block solve: ')

16 print(' Iteration variables:'

sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].ivs)

17 print(' Scaled residuals:',

sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].residual s)

18 print(' Jacobian:\n',

sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].]jacobi an)

19 print(' Jacobian updated in iteration:',

sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].jacobi an_updat ed)

20 print(' Residual scaling factors:'

sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].residual _scaling)

21 print(' Residual scaling factors_updated:’,

sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].residual _scal i ng_updat ed)
22 print(' Scaled residual norm'

sol ves[ 0] . bl ock_sol ves[ 0] .iterations[ 0] . scal ed_resi dual _norm

4.5.3. Compiler Diagnostic Output

By setting the compiler option generate_htm _di agnostics to true, a number of HTML pages contain-
ing diagnostics are generated. The HTML files are generated in the directory Model _Nane_di agnosti cs,
where Mbdel _Nare is the name of the compiled model. As compared to the diagnostics generated by the
conpi | er _l og_I evel argument, the HTML diagnostics contains only the most important information, but it also
providesabetter overview. Opening thefileMbdel _Nane_di agnost i cs/i ndex. ht nl inaweb browser, resultsina
page with information on number of variables, parameters and equations aswell as other statistics about the model.
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Notethat some of the entriesin Model _Nanme_di agnost i cs/ i ndex. ht mi , including Pr obl ens, Fl at t ened nodel ,
Connection sets, Transforned nodel ,Al i as sets,BLT diagnostics table,BLT for DAE SystemandBLT
for Initialization Systemarelinksto sub pages containing additional information. For example, the BLT
for DAE System page contains information about in which order the model equations are evaluated and which
blocks are present after compilation.

Additionally thereis atable view of the BLT. It can be found on the BLT di agnostics tabl e page. It providesa
graphical representation of the BLT. The BLT di agnosti cs tabl e isonly generated when the model have fewer
equations than the limit specified by the option di agnosti cs_l i mi t dueto the size of the graph.

In the following section a more thorough description of the HTML diagnostics will be presented.

4.6. HTML diagnostics

The compiler can generate diagnostic output in HTML format which can be viewed in, e.g, a web browser. The
generation is enabled through the option gener ate_ht ml _di agnosti cs and the diagnostic consists of severa
pages which will be presented in the sections below.

index.html

i ndex. ht M is the index page or, i.e., the start page of the HTML diagnostics. It consists of links to the other
diagnostic pages as well as statistics of the compiled model. Model before transformation summarizes model
statistics of the flattened model. Model after transformation gives the statistics after the compiler has done its
transformations to the model like, for example, alias elimination. Finally the number of unsolved equation blocks
in DAE initialization system and system before and after tearing is applied is presented. Note that nested blocks
are not visible in the equation block statistics.

errors.html

The page errors. ht mi , which can be reached from Pr obl ens in the index page, lists all compiler errors and
warnings that occurred during compilation.

flattened.html

Inflattened. ht m , the flattened model, which the numbers in Model before transformation corresponds to, is
presented. That includes alisting of al constants, parameters and variablesin the model with their t ype_prefi x,
t ype_speci fi er, the possible array subscripts, and theful Iy qualified nane. If thetype_specifier isnot
abuilt-in type, the defined type will be presented at the end of the page like, e.g.,

type Mdelica.Units.Sl.MassFraction = Real (final quantity = "MssFraction",final unit =
"1",mn = 0, max = 1);

After all the components, theinitial equations are presented followed by the equations in the order they areread in
by the compiler. Note that the components are given by their fully qualified name. When functions are used in the
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model, the function description with its inputs, outputs and algorithm is given in the end of the page. Definitions
of records used in the model can be found there as well.

Note that uses of constants, e.g., Model i ca. Const ants. pi, in

par amet er Real x=Mddelica. Constants. pi;

will have been evaluated (to 3.141592653589793) when declared in the flattened model. Thisis aso true for pa
rameters and variables which are necessary to evaluate (for example parameters used as array sizes) or determined
to be equivalent to constants (for example afinal independent parameter).

connections.html

All connection sets in the model are given in connecti ons. ht . For each connection set, the connection type,
e.g., potential or stream, iswritten in parentheses followed by the variables in the set. The (i) and (o) indications
give information on whether the variable is an inner or an outer component.

transfor med.html

Thetransformed model, presented int r ansf or med. ht n1 , has the same structure as the flattened model. The num-
bersin Model after transformation corresponds to this stage of the compilation process. In the transformed mod-
e alias variables are removed, temporary variables are introduced and some other symbolic transformations are
performed. Furthermore, extra initial equations may have been introduced based on, e.g., start attributes set on
variables.

alias.html

Inalias. htm aiasvariablesarelisted set by set. Each set is enclosed within curly brackets and thefirst variable
in the list is the variable name used in the transformed model.

blt.html and initBlt.html

IninitBlt.htm andblt.htn al the equations are sorted in the order in which they are calculated, i.e., by
causality. Theinitidization systemisfound ininitBl t. htmi andthe BLT for the DAE systeminblit.htni.In
case of an interactive FMU, these two systems coincide.

TheBLT consistsof solved equations, metaequations and different kinds of blocks. For equations bel ow the Solved
equation label, the variable on the left hand side is calculated directly through evaluation of the right hand side.
Meta equation blocks hold assert statements etc.

Blocks can be linear, non-linear as well as having discrete parts. The block type is documented in the title, for
example, Torn system (Block 1) of 1 iteration variables and 3 solved variables. Included in the title is also the
name of the block, which in turn is used in the runtime logging. Continuous iteration variables, torn variables and
discrete variables are listed in separate columns. So are also the equations corresponding to each of the categories.
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When reading the BLT from the interactive FMU perspective, res i, with i=0,1,2..., corresponds to the residual
equations. There is no easy way to detect which variables are the iteration variables of the steady state problem
from this view. Nestled blocks will be presented as blocks are presented for segregated FMUSs, before the residual
equations, since these are to be solved before the residual s can be evaluated.

bltTable.html

The relationship between the equations and the variables is presented in bl t Tabl e. ht ml . As for the BLT, there
exist two tables: one for the initialization system and one for the DAE system. Even for this case, the tables are

the same for an interactive FMU.

In the table, the equations are listed in the rows and the variables in the columns. The equation appearsin the same
form as in transformed.html. There are different colors and symbolsin the BLT table. We have

0 The '0' means that the variable is analytically solvable
from the equation if all the other variables are known.

X The 'X' means that the variable cannot be solved for an-
alytically even if the other variables are known.

green The green color marks a solved equation.

pink A pink block shows algebraic equation blocks

dark pink The dark pink highlights the iteration variables and
residual equations of the lighter pink block.

orange The orange color marksdiscrete equationsand variables.

blue The blue color marks an equation block where all equa-

tions are unsolved.

An example of how the BLT table may look like can be found in Figure 4.1. Note that alegend is also generated

in the BLT with an explanation of the symbols.
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BLT for Init DAE System
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Figure4.1BLT tablefor theinitial system of Modelica.M echanics.Rotational .Exampl es.CoupledClutches.
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Chapter 5. Simulation of FMUs In
Python

5.1. Introduction

OCT supports simulation of models described in the Modelica language and models following the FMI standard.
The simulation environment uses Assimulo as standard which is a standalone Python package for solving ordinary
differential and differential algebraic equations. Loading and simulation of FMUs has additionally been made
available as a separate Python package, PyFMI.

This chapter describes how to load and simulate FMUs using explanatory examples.

5.2. A first example

This example focuses on how to use OCT's simulation functionality in the most basic way. The model which is
to be simulated is the Van der Pol problem described in the code below. The model is also available from the
examplesin OCT inthefile vDP. nop (located ini nst al | / Pyt hon/ pyj mi / exanpl es/ fil es).

nodel VDP
/] State start val ues
paranmeter Real x1_0 = O;
parameter Real x2_0 = 1;

/| The states
Real x1(start = x1_0);
Real x2(start = x2_0);

/1 The control signal

i nput Real u;
equati on
der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;
end VDP;

Create anew file in your working directory called vDP. no and save the model.

Next, create a Python script file and write (or copy paste) the commands for compiling and loading a mode!:

# I nport the function for conpilation of nmbdels and the | oad_fnu net hod
from pynodel i ca inport conpile_fnu
frompyfm inmport |oad_fmu
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# Inport the plotting library
import matplotlib.pyplot as plt

Next, we compile and load the model:

# Conpi | e nodel
fmu_nanme = conpil e_f mu("VDP", " VDP. no")

# Load nodel
vdp = | oad_f mu(f nu_nane)

The function conpi | e_f mu compiles the model into abinary, which is then loaded when the vdp object is created.
This object represents the compiled model, an FMU, and is used to invoke the simulation algorithm (for more
information about model compilation and options, see Chapter 4):

res = vdp.sinul ate(final _tine=10)

In this case we use the default simulation algorithm together with default options, except for the final time which
we set to 10. The result object can now be used to access the simulation result in a dictionary-like way:

x1
X2
t

res['x1']
res['x2']
res['tinme']

Thevariable trajectories are returned as NumPy arrays and can be used for further analysis of the simulation result
or for visualization:

plt.figure(l)

plt.plot(t, x1, t, x2)
plt.legend(('x1","'x2"))
plt.title('Van der Pol oscillator.")
plt.ylabel (" Angle (rad)')
plt.xlabel (' Time (s)')

plt.show()

In Figure 5.1 the simulation result is shown.
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Van der Pol oscillator.

Angle (rad)

|
w

Time (s)

Figure 5.1 Simulation result of the Van der Pol oscillator.

5.3. Simulation of Models

Simulation of models in OCT is performed via the simulate method of a model object. The FMU model objects
in OCT arelocated in PyFMI:

* FMUMbdel ME1 / FMJUMbdel ME2
* FMUMbdel CS1 / FMUModel CS2

FMUMbdel ME* / FMUMbdel CS* also supports compiled models from other simulation/modelling tools that follow
the FMI standard (extension .fmu) (either Model exchange FMUs or Co-Simulation FMUs). Both FMI version 1.0
and FMI version 2.0 are supported. For more information about compiling a model in OCT see Chapter 4.

The simulation method is the preferred method for simulation of models and which by default is connected to the
Assimulo simulation package but can also be connected to other simulation platforms. The simulation method for
FMUVbdel ME* / FMUMbdel CS* is defined as:
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cl ass FMUvbdel (ME/ CS) (.. .)

def sinmul ate(self,
start _tine=0. 0,
final _tine=1.0,
i nput=(),
al gori t hm=' Assi nul oFM Al @',
options={}):

And used in the following way:

res = FMUVodel (ME/ CS) *. sinul ate() # Using default val ues

For FMUMbdel Cs*, the FMU contains the solver and is thus used (although using the same interface).

5.3.1. Convenience method, load _fmu

Since there are different FM| specifications for Model exchange and Co-Simulation and also differences between
versions, a convenience method, | oad_f nu has been created. This method isthe preferred access point for loading
an FMU and will return an instance of the appropriate underlying FMUMbdel ( CS/ ME) * class.

nodel = | oad_f mu(" myFMJ. f mu")

5.3.2. Arguments

The start and final time attributes are simply the time where the solver should start the integration and stop the
integration. The input however is abit more complex and is described in more detail in the following section. The
algorithm attribute iswhere the different simul ation package can be specified, however currently only aconnection
to Assimulo is supported and connected through the algorithm Assi mul oFM Al g for FMUMbdel ME*.

5.3.2.1. Input

The input argument defines the input trajectories to the model and should be a 2-tuple consisting of the names of
theinput variables and their trajectories. The names can be either alist of strings, or asingle string for setting only
asingleinput trajectory. The trgjectories can be given as either adatamatrix or afunction. If adatamatrix is used,
it should contain atime vector as the first column, and then one column for each input, in the order of the list of
names. If instead the second argument is a function it should be defined to take the time as input and return an
array with the values of the inputs, in the order of the list of names.

For example, consider that we have a model with an input variable u1 and that the model should be driven by
a sine wave as input. We are interested in the interval 0 to 10. We will look at both using a data matrix and at
using afunction.

import nunpy as N
t = N linspace(0., 10., 100) # Create one hundred evenly spaced points
u = Nsin(t) # Create the input vector
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u_traj = N.transpose(N vstack((t,u))) # Create the data matri x and transpose
# it to the correct form

The above code have created the data matrix that we are interested in giving to the model as input, we just need
to connect the data to a specific input variable, u1:

input_object = ('ul', u_traj)

Now we are ready to simulate using the input and simulate 10 seconds.

res = nodel . sinul ate(final _time=10, input=input_object)

If we on the other hand would have two input variables, ul and u2 the script would instead look like:

import nunmpy as N

t = N linspace(0.,10., 100) # Create one hundred evenly spaced points
ul = N.sin(t) # Create the first input vector

u2 = N. cos(t) # Create the second input vector

u_traj = N transpose(N. vstack((t,ul,u2))) # Create the data matri x and

# transpose it to the correct form
input_object = (['ul',"u2'], u_traj)
res = nodel . sinmulate(final _tinme=10, input=input_object)
Note that the variablesare now aLi st of vari abl es.

If we wereto do the same exampl e using input functionsinstead, the code would look like for the single input case:
input_object = (‘ul', N sin)
and for the double input case:

def input_function(t):
return N.array([N sin(t), N cos(t)])

input_object = (['ul',"'u2'],input_function)
5.3.2.2. Options for Model Exchange FMUs

The options attribute are where options to the specified algorithm are stored, and are preferably used together with:

opts = FMUMbdel ME*. si mul at e_opti ons()

which returns the default options for the default a gorithm. Information about the available options can be viewed
by typing help on the opt s variable:

>>> hel p(opts)
Options for the solving the FMJ usi ng the Assinul o sinulati on package.
Currently, the only solver in the Assiml o package that fully supports
simul ation of FMJs is the solver CVode.
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In Table 5.1 the general optionsfor the AssimuloFMIAIg algorithm are described while in Table 5.2 a selection of
the different solver argumentsfor the ODE solver CVodeis shown. More information regarding the solver options
can be found here, http://www.jmodelica.org/assimulo.

Table 5.1 General options for AssimuloFMIAIg.

Option

Default

Description

solver

"CVode"

Specifies the simulation method that isto be used. Cur-
rently supported solvers are, CVode, Radau5ODE,
RungeK utta34, Dopri5, RodasODE, L SODAR, Ex-
plicitEuler. The recommended solver is"CVode".

ncp

500

Number of communication points. If ncp is zero, the
solver will return the internal steps taken.

initialize

True

If set to True, the initializing algorithm defined in the
FMU model isinvoked, otherwiseit is assumed the us-
er have manually invoked model .initialize()

write_scaled result

Fase

Set this parameter to True to write the result to file
without taking scaling into account. If the value of
scaled is False, then the variable scaling factors of the
model are used to reproduced the unscaled variable
values.

result_file_name

Empty string (default gen-
erated file name will be
used)

Specifies the name of the file where the simulation re-
sult iswritten. Setting this option to an empty string re-
sultsin a default file name that is based on the name of
the model class.

filter

None

A filter for choosing which variablesto actualy store
result for. The syntax can be found here. An exampleis
filter = "*der" , store al variables ending with 'der' and
filter = ["*der*", "summary*"], store all variables with
"der" in the name and al variables starting with "sum-

mary".

result_handling

llfilen

Specifies how the result should be handled. Either
stored to file or stored in memory. One can also use a
custom handler. Available options: "file", "memory",

"custom"

Letslook at an example, consider that you want to simulate an FMU model using the solver CV ode together with
changing the discretization method (di scr) from BDF to Adams:
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opts = nodel . sinmul ate_options() # Retrieve the default options

#opts[' solver'] = ' CVode' # Not necessary, default solver is CVode
opts[' CVode_options']['discr'] = 'Adans' # Change from usi ng BDF to Adans
opts['initialize'] = Fal se # Don't initialize the nodel

nodel . si mul at e( opt i ons=opt s) # Pass in the options to sinulate and sinul ate

It should also be noted from the above exampl e that the options regarding a specific solver, say the tolerances for
CVode, should be stored in adoubledictionary wherethefirst isnamed after the solver concatenated with _opt i ons:

opts[' CVode_options']['atol'] = 1.0e-6 # Options specific for CVode
For the general options, as changing the solver, they are accessed as asingle dictionary:

opts['solver'] = 'CVode' # Changing the solver
opts['ncp'] = 1000 # Changi ng the nunber of communication points.

Table 5.2 Selection of solver arguments for CVode

Option Default Description
discr 'BDF The discretization method. Can be ei-
ther 'BDF or '"Adams
iter 'Newton' The iteration method. Can be either
‘Newton' or 'FixedPoint'.
maxord 5 The maximum order used. Maximum

for 'BDF' is 5 while for the 'Adams'
method the maximum is 12

maxh (final_time-start_time)/ncp Maximum step-size. Positive float.
atol rtol*0.01* (nominal values of thelAbsolute Tolerance. Can be an ar-
continuous states) ray of floats where each value corre-

sponds to the absolute tolerance for
the corresponding variable. Can also
be asingle positive float.

rtol 1.0e-4 The relative tolerance. The relative
tolerance are retrieved from the 'de-
fault experiment' sectioninthe XML-
fileand if not found are set to 1.0e-4

5.3.2.3. Options for Co-Simulation FMUs
The options attribute are where options to the specified algorithm are stored, and are preferably used together with:
opts = FMJUMbdel CS*. si mul at e_opti ons()

which returns the default options for the default a gorithm. Information about the available options can be viewed
by typing help on the opt s variable:
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>>> hel p(opts)

Options for the solving the CS FMU.

In Table 5.3 the general options for the FMICSAIg algorithm are described.

Table 5.3 General options for FMICSAIg.

Option

Default

Description

ncp

500

Number of communication points.

initidize

True

If set to True, the initidizing a-
gorithm defined in the FMU mod-
el is invoked, otherwise it is as-
sumed the user have manualy in-
voked model.initialize()

write_scaled result

False

Set this parameter to Trueto writethe
result to file without taking scaling in-
to account. If the value of scaled is
False, then the variable scaling factors
of the model are used to reproduced
the unscaled variable values.

result file name

Empty string (default generated file
name will be used)

Specifies the name of the file where
the simulation result is written. Set-
ting this option to an empty string
results in a default file name that is
based on the name of the model class.

filter

None

A filter for choosing which vari-
ables to actudly store result
for. The syntax can be found
in http://en.wikipedia.org/wiki/Glob
%28programming%29 . An example
is filter = "*der" , store dl variables
ending with 'der’ and filter =["*der*",
"summary*"], store all variables with
"der" in the name and all variables
starting with "summary".

result_handling

"file"

Specifies how the result should be
handled. Either stored tofile or stored
in memory. One can also use a cus-
tomhandler. Availableoptions:. "file",

"memory", "custom"
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5.3.3. Return argument

The return argument from the simulate method is an object derived from a common result object Resul t Base in
al gorithmdrivers. py with afew extra convenience methods for retrieving the result of a variable. The result
object can be accessed in the same way as a dictionary type in Python with the name of the variable as key.

res = nodel . si mul at e()
y =res['y'] # Return the result for the variabl e/ parameter/constant y
dery = res['der(y)'] # Return the result for the variabl e/ paraneter/constant der(y)

This can be done for all the variables, parameters and constants defined in the model and is the preferred way of
retrieving the result. There are however some more options available in the result object, see Table 5.4.

Table 5.4 Result Object

Option Type Description

options Property Gets the options object that was used
during the simulation.

solver Property Gets the solver that was used during
the integration.

result_file Property Gets the name of the generated result
file.

is variable(name) Method Returns True if the given name is a
time-varying variable.

data_matrix Property Gets the raw data matrix.

is_negated(name) Method Returns True if the given name is
negated in the result matrix.

get_column(name) Method Returns the column number in the da-
ta matrix which corresponds to the
given variable.

5.4. Examples

In the next sections, it will be shown how to use the OCT platform for simulation of various FMUs.

The Python commands in these examples may be copied and pasted directly into a Python shell, in some cases
with minor modifications. Alternatively, they may be copied into afile, which also is the recommended way.

5.4.1. Simulation of a high-index model

Mechanical component-based models often result in high-index DAEs. In order to efficiently integrate such
models, Modelica tools typically employs an index reduction scheme, where some equations are differen-
tiated, and dummy derivatives are selected. In order to demonstrate this feature, we consider the model
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Model i ca. Mechani cs. Rot at i onal . Exanpl es. First from the Modelica Standard library, see Figure 5.2. The
model is of high index since there are two rotating inertias connected with arigid gear.

inealzear
torgue inertial [N

% Py iy -0 ey spring s
PN =7 ot Te=7 o=l b )

° J=Jmator o J=2 J=doad

inertia2 inertia3

o

fregHz=fregHz

Yol

fived

Figure 5.2 Modelica.M echanics.Rotational .First connection diagram

First create a Python script file and enter the usual imports:
inmport matplotlib. pyplot as plt

from pynodel i ca i nport conpile_fnu
frompyfm inport |oad_fnu

Next, the model is compiled and loaded:

# Conpi | e nodel
fmu_nane = conpil e_fmu("Mdelica. Mechani cs. Rot ati onal . Exanpl es. First")

# Load nodel
nodel = | oad_f mu(f nmu_nane)

Notice that no file name, just an empty tuple, isprovided to the function conpi | e_f mu, sincein this case the model
that iscompiled residesin the Modelica Standard Library. In the compilation process, theindex reduction algorithm
isinvoked. Next, the model is simulated for 3 seconds:

# Load result file
res = nodel .sinmulate(final _tine=3.)

Finally, the smulation results are retrieved and plotted:

wl = res['inertial.w ]
W2 =res['inertia2. w]
w3 = res['inertia3.w]

tau = res['torque.tau']
t =res['time']

plt.figure(l)

plt.subplot(2,1,1)

plt.plot(t,wl,t,w2,t,w3)

plt.grid(True)

plt.legend(['inertial.w ,'inertia2.w,'inertia3.w])
plt.subplot (2,1, 2)

plt.plot(t,tau)

plt.grid(True)
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plt.legend(['tau'])
plt.xlabel ("time [s]"')
plt.show()

Y ou should now see a plot as shown below.

— inertial.w ||
— inertia2.w||
— inertia3.w/| |

85 0.5 1.0 1.5 2.0
time [s]

Figure 5.3 Simulation result for Modelica.M echanics.Rotational .Examples.First

5.4.2. Simulation and parameter sweeps

This example demonstrates how to run multiple simulations with different parameter values. Sweeping parameters
is a useful technique for analysing model sensitivity with respect to uncertainty in physical parameters or initial
conditions. Consider the following model of the Van der Pol oscillator:

nodel VDP
/] State start val ues
paranmeter Real x1_0 = O;
paranmeter Real x2_0 = 1;

/] The states
Real x1(start
Real x2(start

x1 0);
x2_0);

/1 The control signal

i nput Real u;

equati on
der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;

end VDP;
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Notice that the initial values of the states are parametrized by the parameters x1_0 and x2_0. Next, copy the
Modelica code aboveinto afile vDP. mo and save it in your working directory. Also, create a Python script file and
nameit vdp_pp. py. Start by copying the commands:

import nunpy as N

import pylab as P

from pynodel i ca inport conpile_fmu
frompyfm inmport |oad_fmnu

into the Python file. Compile and load the model:

# Define nodel file nane and cl ass nane
nodel _nane = ' VDP'
nmofile = ' VDP. no'

# Conpi | e nodel
fmu_nane = conpil e_f mu( nodel _nane, nofil e)

Next, we define the initial conditions for which the parameter sweep will be done. The state x2 startsat 0, whereas
theinitial condition for x1 is swept between -3 and 3:

# Define initial conditions

N points = 11

x1 0 = N. linspace(-3.,3.,N_points)
x2_0 = N. zeros(N_points)

In order to visualize the results of the simulations, we open a plot window:

fig = P.figure()
P.clf()

P. xI abel (' x1')
P. yl abel (' x2")

The actual parameter sweep is done by looping over the initial condition vectors and in each iteration set the
parameter values into the model, simulate and plot:

for i in range(N_points):
# Load nodel
vdp = | oad_f mu(f mu_nane)
# Set initial conditions in nodel
vdp. set (' x1_0',x1_0[i])
vdp. set (' x2_0',x2_0[i])
# Sinmul ate
res = vdp. sinul ate(final _tinme=20)
# Get simulation result
xl=res['x1']
x2=res[' x2']
# Plot sinmulation result in phase plane pl ot
P.plot (x1, x2,'b")

P.grid()

P. show()
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Y ou should now see aplot similar to that in Figure 5.4.

-3

Figure 5.4 Simulation result-phase plane

5.4.3. Simulation of an Engine model with inputs

In this example the model is larger than the previous. It is a dightly modified version of the model
EngineV6_analytic from the Multibody library in the Modelica Standard Library. The modification consists of a
replaced load with a user defined load. This has been done in order to be able to demonstrate how inputs are set
from a Python script. In Figure 5.5 the model is shown.

engine

waorld

H

Figure 5.5 Overview of the Engine model
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The Modelica code for the model is shown below, copy and save the code in afile named Engi neV6. no.

nodel Engi neV6_anal yti c_wit h_i nput
out put Real engi neSpeed_rpm= Mdelica. Units. Sl. Conversions.to_rpn{load.w);
out put Real engineTorque = filter.u;
out put Real filteredEngi neTorque = filter.y;

i nput Real u;
i mport Mbdel i ca. Mechani cs. *;

i nner Mul ti Body. Wrld worl d;
Mul ti Body. Exanpl es. Loops. Utilities. Engi neV6_anal yti c engi ne(redecl are
nmodel Cylinder = MiltiBody. Exanpl es. Loops. Utilities.Cylinder_anal ytic_CAD);

Rot at i onal . Conponents. | nertia | oad(
phi (start=0, fi xed=true), w(start=10,fi xed=true),
st at eSel ect =St at eSel ect . al ways, J=1);

Rot at i onal . Sensors. Tor queSensor torqueSensor ;

Rot at i onal . Sour ces. Tor que t or que;

Model i ca. Bl ocks. Conti nuous. Critical Danping filter(
n=2,ini t Type=Mbdel i ca. Bl ocks. Types. I nit. St eadySt at e, f =5) ;

equati on
torque.tau = u;

connect (worl d. frame_b, engine.frane_a);

connect (torque. fl ange, | oad.fl ange_b);

connect (torqueSensor. fl ange_a, engine.fl ange_b);
connect (torqueSensor. fl ange_b, |oad.flange_a);
connect (torqueSensor.tau, filter.u);

annot ati on (experiment (StopTi ne=1.01));

end Engi neV6_anal ytic_w th_input;

Now that the model has been defined, we create our Python script which will compile, simulate and visualize the
result for us. Create a new text-file and start by copying the below commands into the file. The code will import
the necessary methods and packages into Python.

from pynodelica i nport conpile_fnu
frompyfm inport |oad_fnu
import pylab as P

Compiling the model is performed by invoking the conpi | e_f ru method where the first argument is the name of
the model and the second argument is where the model is located (which file). The method will create an FMU in
the current directory and in order to simulate the FMU, we need to additionally load the created FM U into Python.
Thisisdone with thel oad_f mu method which takes the name of the FMU as input.

name = conpil e_fru("Engi neV6_anal ytic_with_input", "Engi neV6.nn")
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nmodel = | oad_f nmu( nane)

So, now that we have compiled the model and loaded it into Python we are almost ready to simulate the model.
First however, we retrieve the simulation options and specify how many result points we want to receive after a
simulation.

opts = nodel . sinul ate_options()
opts["ncp"] = 1000 #Specify that 1000 out put points shoul d be returned

A simulation isfinally performed using the si mul at e method on the model and as we have changed the options,
we need to additionally provide these options to the simulate method.

res = nodel . si mul at e( opti ons=opt s)

The simulation result is returned and stored into the r es object. Result for atrajectory is easily retrieved using a
Python dictionary syntax. Below is the visualization code for viewing the engine torque. One could instead use the
Plot GUI for the visualization as the result are stored in afilein the current directory.

P.plot(res["tine"],res["filteredEngi neTorque"], |abel="Filtered Engi ne Torque")
P. show()

InFigure5.6 thetrajectoriesare shown for he enginetorque and the engine speed utilizing subplotsfrom Matplatlib.
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Figure 5.6 Resulting trajectories for the engine model.
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Above we have simulated the engine model and looked at the result, we have not however specified any load as
input. Remember that the model we are looking at has a user specified load. Now we will create a Python function
that will act as our input. We create a function that depends on the time and returns the value for use asinput.

def input_func(t):
return -100. 0*t

In order to use thisinput in the simulation, ssmply provide the name of the input variable and the function as the
input argument to the simulate method, see below.

res = nodel . simul ate(options=opts, input=("u",input_func))
Simulate the model again and look at the result and the impact of the input.

Large models contain an enormous amount of variables and by default, all of these variables are stored in the resullt.
Storing the result takes time and for large models the saving of the result may be responsible for the majority of
the overall simulation time. Not all variables may be of interest, for example in our case, we are only interested
in two variables so storing the other variables are not necessary. In the options dictionary there is afilter option
which allows to specify which variables should be stored, so in our case, try the below filter and look at the impact
on the simulation time.

opts["filter"] = ["filteredEngi neTorque", "engi neSpeed_rpni]
5.4.4. Simulation using the native FMI interface

This example shows how to use the native OCT FMI interface for simulation of an FMU of version 2.0 for Model
Exchange. For the procedure with version 1.0, refer to Functional Mock-up Interface for Model Exchange version
1.0.

The FMU that is to be simulated is the bouncing ball example from Qtronics FMU SDK (http://www.gtronic.de/
en/fmusdk.html). This example is written similar to the example in the documentation of the 'Functional Mock-
up Interface for Model Exchange' version 2.0 (https:.//www.fmi-standard.org/). The bouncing ball model isto be
simulated using the explicit Euler method with event detection.

The example can also be found in the Python examples catalog in the OCT platform. There you can also find a
similar example for simulation with aversion 1.0 Model Exchange FMU.

The bouncing ball consists of two equations,

h=uv
U=—g

and one event function (also commonly called root function),

h>0
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Where the ball bounces and lose some of its energy according to,
Vg = —€Vy

Here, h isthe height, g the gravity, v the velocity and e a dimensionless parameter. The starting values are, h=1
and v=0 and for the parameters, e=0.7 and g = 9.81.

5.4.4.1. Implementation

Start by importing the necessary modules,
import nunmpy as N

inmport pylab as P # Used for plotting
frompyfm.fm inmport |oad_fnmu # Used for |oading the FMJ

Next, the FMU isto be loaded and initialized

# Load the FMJ by specifying the fmu together with the path.
bounci ng frmu = | oad_f mu('/pat h/to/ FMJ bounci ngBal | . f mu' )

Tstart = 0.5 # The start tine.

Tend = 3.0 # The final sinulation tine.

# Initialize the nodel. Also sets all the start attributes defined in the
# XM file.

bounci ng_f mu. setup_experinent (start_tine = Tstart) # Set the start tine to Tstart
bounci ng_fnu. enter_initializati on_node()
bouncing fru.exit _initialization_node()

Thefirst line loads the FMU and connects the C-functions of the model to Python together with loading the infor-
mation from the XML-file. The start time also needs to be specified by providing the argument st art _ti me to
setup_experiment. The model is aso initialized, which must be done before the simulation is started.

Note that if the start time is not specified, FMUMbdel ME2 tries to find the starting time in the XML -file structure
‘default experiment’ and if successful starts the simulation from that time. Also if the XML-file does not contain
any information about the default experiment the simulation is started from time zero.

Next step isto do the event iteration and thereafter enter continuous time mode.

el nfo = bounci ng_f mu. get _event _i nf o()

el nfo. newDi scr et eSt at esNeeded = True

#Event iteration

whi | e el nfo. newDi screteStat esNeeded == True:
bounci ng_f mu. ent er _event _node()
bounci ng_f nu. event _updat e()
el nf o = bounci ng_f mu. get _event _i nf o()

bounci ng_f mu. ent er _cont i nuous_ti me_node()
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Then information about the first step is retrieved and stored for later use.

# Get Continuous States

x = bounci ng_f mu. conti nuous_st at es

# Get the Nominal Val ues

X_nom nal = bounci ng_f mu. nom nal _conti nuous_st at es
# Get the Event Indicators

event _i nd = bounci ng_f nu. get _event _i ndi cat or s()

# Val ues for the solution
# Retrieve the valureferences for the values 'h' and 'V
vref = [bouncing_fnu.get_variable_valueref('h')] +\
[ bounci ng_f mu. get _vari abl e_val ueref (' v')]
t_sol = [Tstart]
sol = [bouncing_fru.get_real (vref)]

Here the continuous states together with the nominal values and the event indicators are stored to be used in the
integration loop. In our case the nominal values are all equal to one. This information is available in the XML-
file. We also create lists which are used for storing the result. The final step before the integration is started isto
define the step-size.

time = Tstart
Tnext = Tend # Used for tine events
dt = 0.01 # Step-size

We are now ready to create our main integration loop where the solution is advanced using the explicit Euler
method.

# Main integration |oop.

while time < Tend and not bouncing_frmu. get _event _info().term nateSi nmul ati on:
#Conput e the derivative of the previous step f(x(n), t(n))
dx = bounci ng_f nu. get _derivatives()

# Advance
h = min(dt, Tnext-tine)
time =time + h

# Set the tine
bouncing_frnu.tinme = tine

# Set the inputs at the current tinme (if any)
# bounci ng_fnmu. set _real, set _i nteger, set _bool ean, set_string (val ueref, val ues)

# Set the states at t = tine (Performthe step using x(n+1)=x(n)+hf(x(n), t(n))
X = X + h*dx
bounci ng_f mu. conti nuous_states = x

Thisis the integration loop for advancing the solution one step. The loop continues until the final time has been
reached or if the FMU reported that the simulation isto be terminated. At the start of the loop the derivatives of the
continuous states are retrieved and then the simulation time is incremented by the step-size and set to the model.
It could also be the case that the model depends on inputs which can be set using theset _(real /. ..) methods.
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Note that only variables defined in the XML-file to be inputs can be set using the set _(real /...) methods
according to the FMI specification.

The step is performed by calculating the new states (x+h* dx) and setting the values into the model. As our model,
the bouncing ball also consist of event functions which needs to be monitored during the simulation, we have to
check the indicators which is done bel ow.

# Get the event indicators at t = time
event _i nd_new = bounci ng_f nmu. get _event _i ndi cat ors()

# Informthe nodel about an accepted step and check for step events
step_event = bounci ng_f nu. conpl et ed_i nt egrat or _st ep()

# Check for tine and state events
time_event = abs(tine-Tnext) <= 1.e-10
state_event = True if True in ((event_ind_new>0.0) != (event _ind>0.0)) else False

Events can be, time, state or step events. The time events are checked by continuously monitoring the current time
and the next time event (Tnext ). State events are checked against sign changes of the event functions. Step events
are monitored in the FMU, in the method conpl et ed_i nt egr at or _st ep() and return Tr ue if any event handling
is necessary. If an event has occurred, it needs to be handled, see below.

# Event handling

if step_event or tinme_event or state_event:
bounci ng_f mu. ent er _event _node()
el nfo = bounci ng_fnu. get _event _i nfo()
el nf 0. newDi scr et eSt at esNeeded = True

# Event iteration

whi | e el nfo. newDi scr et eSt at esNeeded:
bounci ng_f mu. event update('0') # Stops at each event iteration
el nfo = bounci ng_fnu. get _event _i nfo()

# Retrieve solutions (if needed)

i f el nfo.newDi scret eSt at esNeeded:
# bounci ng_f mu. get _real , get _i nt eger, get _bool ean, get _stri ng(val ueref)
pass

# Check if the event affected the state values and if so sets them
if elnfo.val uesO Conti nuousSt at esChanged:
X = bounci ng_f nu. conti nuous_st at es

# Get new nom nal val ues.
i f el nfo.nom nal sO Cont i nuousSt at esChanged:
atol = 0.01*rtol *bounci ng_f mu. nom nal _conti nuous_st at es

# Check for new tine event
i f el nfo.next Event Ti neDef i ned:

Tnext = m n(el nfo.next Event Ti me, Tend)
el se:




Simulation of FMUs in Python

Tnext = Tend
bounci ng_f mu. ent er _cont i nuous_ti me_node()

If an event occurred, we enter the iteration loop and the event mode where we loop until the solution of the new
states have converged. During this iteration we can also retrieve the intermediate values with the normal get
methods. At thispoint el nf o contains information about the changes made in the iteration. If the state values have
changed, they are retrieved. If the state references have changed, meaning that the state variables no longer have
the same meaning as before by pointing to another set of continuous variables in the model, for example in the
case with dynamic state selection, new absolute tolerances are cal culated with the new nominal values. Finally the
model is checked for a new time event and the continuous time mode is entered again.

event _ind = event _i nd_new

# Retrieve solutions at t=tine for outputs
# bounci ng_fmu. get _real, get _i nteger, get_bool ean, get_string (val ueref)

t_sol += [tine]
sol += [bounci ng_fnu. get_real (vref)]

In the end of the loop, the solution is stored and the old event indicators are stored for use in the next loop.

After the loop has finished, by reaching the final time, we plot the smulation results

Pl ot the height

.figure(l)

.plot(t_sol,N array(sol)[:,0])
title(bouncing_fmu.get_nane())
yl abel (' Height (m")

.xl abel (' Time (s)')

Plot the velocity

.figure(2)
plot(t_sol,Narray(sol)[:,1])
.title(bouncing fnu.get_nane())
.yl abel (' Velocity (m's)')

.xl abel (' Time (s)')

. show()

VTUUUUUHUUDUDUDTH

and the figure below shows the results.
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Figure5.7 Simulation result

5.4.5. Simulation of Co-Simulation FMUs

Simulation of a Co-Simulation FMU follows the same workflow as simulation of a Model Exchange FMU. The
model we would like to simulateisamodel of abouncing ball, thefile bounci ngBal | . f mu islocated in the exam-
plesfolder inthe OCT installation, pyf mi / exanpl es/ fi | es/ CS1. 0/ for version 1.0 and pyf ni / exanpl es/fil es/
cs2. o/ for version 2.0. The FMU is a Co-simulation FMU and in order to simulate it, we start by importing the
necessary methods and packages into Python:

import pylab as P # For plotting
frompyfm inport load_frmu # For |oading the FMJ

Here, we have imported packages for plotting and the method | oad_f mu which takes as input an FMU and then
determines the type and returns the appropriate class. Now, we need to load the FMU.

nmodel = | oad_frmu(' bounci ngBal | . fmu')

Thenodel object can now be used to interact with the FMU, setting and getting values for instance. A simulation
is performed by invoking the si mul at e method:

res = nodel .simulate(final _tinme=2.)

As a Co-Simulation FMU contains its own integrator, the method simulate calls this integrator. Finally, plotting
theresult is done as before:

# Retrieve the result for the variabl es
h_res =res['h']
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v_res res['v']

t res['tine']

# Plot the solution

# Pl ot the height

fig = P.figure()

.clf()

.subplot (2,1, 1)

.plot(t, h_res)

yl abel (' Height (m")

xl abel (' Time (s)')

Plot the velocity

subpl ot (2, 1, 2)

plot(t, v_res)

yl abel (' Vel ocity (m's)")
. x| abel (" Time (s)')
.suptitle(' FM Bouncing Ball"')
show()

UUUUUU#TVUTUUT

and the figure below shows the results.
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Figure 5.8 Simulation result
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Chapter 6. Dynamic Optimization in
Python

6.1. Introduction

OCT supports optimization of dynamic and steady state models. Many engineering problems can be cast as opti-
mization problems, including optimal control, minimum time problems, optimal design, and model calibration.
These different types of problemswill beillustrated and it will be shown how they can be formulated and solved.
The chapter starts with an introductory example in Section 6.2 and in Section 6.3, the details of how the optimiza-
tion algorithms are invoked are explained. The following sections contain tutorial exercises that illustrates how to
set up and solve different kinds of optimization problems.

When formulating optimization problems, models are expressed in the Modelica language, whereas optimization
specifications are given in the Optimica extension which is described in Chapter 16. The tutorial exercisesin this
chapter assumes that the reader is familiar with the basics of Modelica and Optimica.

6.2. A first example

In this section, asimple optimal control problem will be solved. Consider the optimal control problem for the Van
der Pol oscillator model:

optim zation VDP_Opt (objectivelntegrand = x172 + x272 + u”2,
startTi ne 0,
final Ti me 20)

[/ The states
Real x1(start=0,fixed=true);
Real x2(start=1,fixed=true);

/1 The control signal
i nput Real u;

equati on
der (x1)
der (x2)
constrai nt
u<=0. 75;
end VDP_Opt;

(1 - x2722) * x1 - x2 + u;
x1;

Createanew filenamed vDP_opt . mop and saveit in you working directory. Noticethat thismodel containsboth the
dynamic system to be optimized and the optimization specification. Thisis possible since Optimicais an extension
of Modelica and thereby supports also Modelica constructs such as variable declarations and equations. In most
cases, however, Modelica models are stored separately from the Optimica specifications.
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Next, create a Python script file and awrite (or copy paste) the following commands:

# I nmport the function for transfering a nodel to CasADi | nterface
frompyjm inport transfer_optim zation_problem

# Inport the plotting library
import matplotlib. pyplot as plt

Next, we transfer the mode!:

# Transfer the optim zati on problemto casadi
op = transfer_optim zati on_probl en{"VDP_Opt", "VDP_Opt.nop")

The function t r ansf er _opt i ni zat i on_pr obl emtransfers the optimization problem into Python and expresses
it's variables, equations, etc., using the automatic differentiation tool CasADi. This object represents the compiled
model and is used to invoke the optimization algorithm:

res = op.optimze()

In this case, we use the default settings for the optimization algorithm. The result object can now be used to access
the optimization result:

# Extract variable profiles
x1l=res['x1']

x2=res["' x2']

u=res['u']

t=res['tine']

The variable trgjectories are returned as NumPy arrays and can be used for further analysis of the optimization
result or for visualization:

plt.figure(l)
plt.clf()

pl t. subpl ot (311)
plt.plot(t,x1)
plt.grid()
plt.ylabel ('x1")

pl t. subpl ot (312)
plt.plot(t,x2)
plt.grid()
plt.yl abel (' x2")

pl t. subpl ot (313)
plt.plot(t,u)
plt.grid()
plt.ylabel ("u")
plt.xlabel ("tine')
plt.show()

Y ou should now see the optimization result as shown in Figure 6.1.
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Optimal control and state profiles for the Van Der Pol optimal control problem.
Figure 6.1 Optimal profilesfor the VDP oscillator

6.3. Solving optimization problems

The first step when solving an optimization problem isto formulate amodel and an optimization specification and
then compile the model as described in the following sections in this chapter. There are currently two different
optimization agorithms available in OCT, which are suitable for different classes of optimization problems.

» Dynamic optimization of DAEsusing direct collocation with CasADi. Thisagorithmisthedefault algorithm
for solving optimal control and parameter estimation problems. It is implemented in Python, uses CasADi for
computing function derivatives and the nonlinear programming solvers IPOPT or WORHP for solving the re-
sulting NLP. Use this method if your model is a DAE and does not contain discontinuities.

» Derivative free calibration and optimization of ODEs with FMUs. This algorithm solves parameter opti-
mization and model calibration problems and is based on FMUs. The algorithm is implemented in Python and
relies on a Nelder-Mead derivative free optimization algorithm. Use this method if your model is of large scale
and has amodest number of parametersto calibrate and/or contains discontinuities or hybrid elements. Note that
this algorithm is applicable to models which have been exported as FMUs al so by other tools than OCT.

Toillustrate how to solve optimization problemsthe VVan der Pol problem presented aboveis used. First, the model
istransferred into Python

op = transfer_optim zation_probl en("VDP_pack. VDP_Opt 2", "VDP_Opt.nop")
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All operations that can be performed on the model are available as methods of the op object and
can be accessed by tab completion. Invoking an optimization agorithm is done by calling the method
Opt i ni zat i onPr obl em opt i ni ze, which performs the following tasks:

* Sets up the selected algorithm with default or user defined options
* Invokes the algorithm to find a numerical solution to the problem
» Writes the result to afile

* Returns aresult object from which the solution can be retrieved

The interactive help for the opt i i ze method is displayed by the command:

>>> hel p(op. opti m ze)
Sol ve an optim zati on probl em

Par aneters: :

al gorithm --
The al gorithmwhich will be used for the optimzation is
speci fied by passing the al gorithm class name as string or
class object in this argunment. 'algorithm can be any
cl ass which inplements the abstract class Al gorithnBase
(found in algorithmdrivers.py). In this way it is
possible to wite customalgorithns and to use themwth this
functi on.

The followi ng al gorithns are avail abl e:

- 'Local DAECol | ocationAl g'. This algorithmis based on
direct collocation on finite el enents and the al gorithm | POPT
is used to obtain a numerical solution to the problem

Defaul t: 'Local DAECol | ocati onAl g'

options --
The options that shoul d be used in the al gorithm The options
docunent ation can be retrieved froman options object:

>>> myMbdel = Optim zati onProblen(...)
>>> opts = nyModel . optim ze_options()
>>> opts?

Val id val ues are:

- Adict that overrides sone or all of the algorithmls default val ues.
An enpty dict will thus give all options with default val ues.

- An Options object for the corresponding al gorithm e.g.
Local DAECol | ocat i onAl gOpti ons for Local DAECol | ocati onAl g.

Default: Enpty dict

Returns::
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A result object, subclass of algorithmdrivers. Resul t Base.

The optimize method can be invoked without any arguments, in which case the default optimization algorithm,
with default options, isinvoked:

res = vdp. optimze()

In the remainder of this chapter the available algorithms are described in detail. Options for an algorithm can be
set using the opt i ons argument to the opt i mi ze method. It is convenient to first obtain an options object in order
to access the documentation and default option values. Thisis done by invoking the method opt i ni ze_opt i ons:

>>> hel p(op. opti m ze_opti ons)

Returns an instance of the optim ze options class containing options

default values. If called w thout argunent then the options class for

the default optimzation algorithmw |l be returned.

Paraneters: :

al gorithm --

The al gorithm for which the options class should be returned.
Possi bl e val ues are: 'Local DAECol | ocati onAl g'.
Def aul t: ' Local DAECol | ocati onAl g'

Ret urns: :

Options class for the algorithmspecified with default val ues.

The option object is essentially a Python dictionary and options are set simply by using standard dictionary syntax:

opts = vdp.optim ze_options()
opts['n_e'] =5

The optimization agorithm may then be invoked again with the new options:
res = vdp. optinmi ze(opti ons=opts)
Available options for each algorithm are documented in their respective sectionsin this Chapter.

The opt i m ze method returns aresult object containing the optimization result and some meta information about
the solution. The most common operation isto retrieve variable trajectories from the result object:

time = res['tinme']
x1 = res['x1']

Variable datais returned as NumPy arrays. The result object also contains references to the model that was opti-
mized, the name of the result file that was written to disk, a solver object representing the optimization algorithm
and an options object that was used when solving the optimization problem.
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6.4. Scaling

Many physical models contain variables with values that differ by several orders of magnitude. A typical example
isthermodynamic models containing pressures, temperatures and mass flows. Such large differencesin scales may
have a severe deteriorating effect on the performance of numerical algorithms, and may in some cases even lead to
thealgorithm failing. In order to relieve the user from the burden of manually scaling variables, Modelicaoffersthe
noni nal attribute, which can be used to automatically scale amodel. Consider the Modelica variable declaration:

Real pressure(start=101.3e3, nom nal =1e5);

Here, the noni nal attribute is used to specify that the variable pressure takes on values which are on the order of
16e5. In order to use noni nal attributes for scaling with CasADi-based algorithms, scaling is enabled by setting the
algorithm option vari abl e_scal i ng to True, and is enabled by default . When scaling is enabled, all variables
with a set nominal attribute are then scaled by dividing the variable value with its nominal value, i.e., from an
algorithm point of view, al variables should take on values close to one. Notice that variablestypically vary during
a simulation or optimization and that it is therefore not possible to obtain perfect scaling. In order to ensure that
model equations are fulfilled, each occurrence of avariable is multiplied with its nominal value in equations. For
example, the equation:

T =1(p)

is replaced by the equation

T_scal ed*T_nom = f(p_scal ed*p_non)
whenvari abl e scal i ng isenabled.

The agorithm in Section 6.5 aso has support for providing trajectories (obtained by for example simulation) that
are used for scaling. This means that it usually is not necessary to provide nominal values for all variables, and
that it is possible to use time-varying scaling factors.

For debugging purposes, it is sometimes useful to write a simulation/optimization/initialization result to file
in scaled format, in order to detect if there are some variables which require additional scaling. The option
write_scal ed_resul t hasbeen introduced as an option to theinitial i ze, si mul at e and opt i m ze methods
for this purpose.

6.5. Dynamic optimization of DAEs using direct collo-
cation with CasADi

6.5.1. Algorithm overview

The direct collocation method described in this section can be used to solve dynamic optimization problems, in-
cluding optimal control problems and parameter optimization problems. In the collocation method, the dynamic
model variable profiles are approximated by piecewise polynomials. This method of approximating a differential
equation correspondsto afixed step implicit Runge-Kutta scheme, where the mesh defines the length of each step.
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Also, the number of collocation points in each element, or step, needs to be provided. This number corresponds
to the stage order of the Runge-Kutta scheme. The selection of mesh is analogous to the choice of step length in
aone-step algorithm for solving differential equations. Accordingly, the mesh needs to be fine-grained enough to
ensure sufficiently accurate approximation of the differential constraint. The nonlinear programming (NLP) solvers
IPOPT and WORHP can be used to solve the nonlinear program resulting from collocation. The needed first- and
second-order derivatives are obtained using CasADi by algorithmic differentiation. For more details on the inner
workings of the algorithm, see [Mag2015] and Chapter 3 in [Mag2016].

The NLP solvers require that the model equations are twice continuously differentiable with respect to all of the
variables. This for example means that the model can not contain integer variables or i f clauses depending on
the states.

Optimization models are represented using the class Opt i ni zat i onPr obl em which can be instantiated using the
transfer_optini zati on_probl emmethod. An object containing all the options for the optimization algorithm
can be retrieved from the object:

frompyjm inmport transfer_optim zation_probl em

op = transfer_optim zation_probl en(cl ass_nanme, optimca_file_path)
opts = op.optimnmze_options()

opts? # View the hel p text

After options have been set, the options object can be propagated to the opt i ni ze method, which solves the op-
timization problem:

res = op.optim ze(options=opts)

The standard optionsfor the algorithm are shown in Table 6.1. Additional documentation isavailablein the Python
class documentation. The algorithm also has alot of experimenta options, which are not as well tested and some
are intended for debugging purposes. These are shown in Table 6.2, and caution is advised when changing their
default values.

Table 6.1 Standard options for the CasADi- and collocation-based optimization algorithm

Option Default Description
n_e 50 Number of finite e ements.
hs None Element lengths. Possible values: None, iterable

of floats and "free" None: The element lengths are
uniformly distributed. iterable of floats: Compo-
nent i of the iterable specifies the length of element
i. The lengths must be normalized in the sense that
the sum of all lengths must be equal to 1. "free":
The element |engths become optimization variables
and are optimized according to the algorithm option
free_element_lengths data. WARNING: The "free"
option isvery experimental and will not always give
desirable results.




Dynamic Optimization in Python

Option Default Description
n_cp 3 Number of collocation pointsin each element.
expand_t o_sx "NLP" Whether to expand the CasADi M X graphsto SX

graphs. Possible values: "NLP*, "DAE", "no". "NLP":
The entire NLP graph is expanded into SX. This will
lead to high evaluation speed and high memory con-
sumption. "DAE": The DAE, objective and constraint
graphs for the dynamic optimization problem expres-
sions are expanded into SX, but the full NLP graphis
an MX graph. Thiswill lead to moderate evaluation
speed and moderate memory consumption. "no": All
constructed graphs are MX graphs. Thiswill lead to
low evaluation speed and low memory consumption.

init_traj None Variable trgjectory data used for initialization of the
NLP variables.

nomi nal _tr aj None Variable trajectory data used for scaling of the NLP
variables. This option isonly applicableif variable
scaling is enabled.

bl ocki ng_factors None (not used) Blocking factors are used to enforce piecewise

constant inputs. The inputs may only change val-

ues at some of the element boundaries. The option

is either None (disabled), given as an instance of
pyjmi.optimization.casadi_collocation.BlockingFactors
or asalist of blocking factors. If the optionsisalist

of blocking factors, then each element in the list spec-
ifies the number of collocation elements for which

all of the inputs must be constant. For example, if
blocking_factors ==[2, 2, 1], then the inputs will at-
tain 3 different values (number of elementsin thelist),
and it will change values between collocation element
number 2 and 3 as well as number 4 and 5. The sum of
all elementsin the list must be the same as the number
of collocation elements and the length of the list de-
termines the number of separate values that the inputs
may attain. See the documentation of the BlockingFac-
tors class for how to useit. If blocking_factorsis None,
then the usual collocation polynomials are instead used
to represent the controls.

external _data None Data used to penalize, constrain or eliminate certain
variables.
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Option

Default

Description

del ayed_f eedback

None

If not None, should be adi ct with mappings

"del ayed_var': ('undel ayed var', delay_ne).
For each key-value pair, adds the the constraint

that the variable' del ayed_var' equalsthe val-

ue of the variable' undel ayed_var' delayed by

del ay_ne elements. Theinitia part of the trajectory
for' del ayed_var' isfixed toitsinitial guessgiven by
theinit_traj optionortheinitial Guess attribute.

" del ayed_var' will typically be an input. Thisisan
experimental feature and is subject to change.

sol ver

'|POPT"

Specifies the nonlinear programming solver to be used.
Possible choices are '1POPT' and 'WORHP'.

verbosity

Sets verbosity of algorithm output. O prints nothing, 3
prints everything.

| POPT_opti ons

IPOPT defaults

IPOPT options for solution of NLP. See IPOPT's docu-
mentation for available options.

WORHP_opt i ons

WORHP defaults

WORHP options for solution of NLP. See WORHP's
documentation for available options.

Table 6.2 Experimental and

debugging options for the CasADi- and collocation-based optimization algorithm

Option

Default

Description

free_el ement _| engt hs_dahone

Data used for optimizing the element lengthsif they
are free. Should be None when hs 1= "free".

di scr

'LGR'

Determines the collocation scheme used to discretize
the problem. Possible values: "LG" and "LGR". "LG":
Gauss collocation (L egendre-Gauss) "LGR": Radau
collocation (L egendre-Gauss-Radau).

named_vars

False

If enabled, the solver will create a duplicated set of

NL P variables which have names corresponding to the
M odelica/Optimica variable names. Symbolic expres-
sions of the NLP consisting of the named variables
can then be obtained using the get_named_var_expr
method of the collocator class. Thisoptionisonly in-
tended for investigative purposes.

init_dual

None

Dictionary containing vectors of initial guessfor NLP
dual variables. Intended to be obtained as the solu-
tion of an optimization problem which has an identical
structure, which is stored in the dual _opt attribute of
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Option

Default

Description

the result object. The dictionary has two keys, 'g' and
'X', containing vectors of the corresponding dual vari-
ableintial guesses. Note that when using |POPT, the
option warm_start_init_point has to be activated for
this option to have an effect.

vari abl e_scal i ng True Whether to scale the variables according to their
nominal values or the trajectories provided with the
nominal_traj option.

equation_scal i ng False Whether to scale the equationsin collocated NLP.

Many NLP solvers default to scaling the equations, but
if it is done through this option the resulting scaling
can be inspected.

nom nal _traj _node

')

{"_default_mode": "lin-

Mode for computing scaling factors based on nominal
trajectories. Four possible modes: "attribute”: Time-
invariant, linear scaling based on Nominal attribute
"linear": Time-invariant, linear scaling "affine": Time-
invariant, affine scaling "time-variant": Time-vari-

ant, linear scaling Option is a dictionary with variable
names as keys and corresponding scaling modes as val-
ues. For all variables not occuring in the keys of the
dictionary, the mode specified by the"_default_mode"
entry will be used, which by default is"linear".

result_file_nane

Specifies the name of the file where the result is writ-
ten. Setting this option to an empty string resultsin a
default file name that is based on the name of the mod-
el class.

wite_scal ed result

False

Return the scaled optimization result if set to True, oth-
erwise return the unscaled optimization result. This
option isonly applicable when variable scaling is en-
abled and is only intended for debugging.

print_condition_nunber

sFalse

Prints the condition numbers of the Jacobian of the
constraints and of the simplified KKT matrix at the ini-
tial and optimal points. Note that thisis only feasible
for very small problems.

resul t _node

‘collocation_points

Specifies the output format of the optimization
result. Possible values: "collocation_points’,
"element_interpolation” and "mesh_points’
"collocation_points': The optimization result is giv-

57



Dynamic Optimization in Python

Option

Default

Description

en at the collocation points as well as the start and fi-
nal time point. "element_interpolation”: The values

of the variable trajectories are calculated by evaluat-
ing the collocation polynomials. The algorithm option
n_eva_pointsis used to specify the evaluation points
within each finite element. "mesh_points": The opti-
mization result is given at the mesh points.

n_eval _points

20

The number of evaluation points used in each ele-
ment when the algorithm option result_modeis set

to "element_interpolation”. One evaluation point is
placed at each element end-point (hence the option val-
ue must be at least 2) and the rest are distributed uni-
formly.

checkpoi nt

False

If checkpoi nt issetto True, transcribed NLPis built
with packed M X functions. Instead of calling the DAE
residua function, the collocation equation function,
and the lagrange term functionn_e * n_cp times, the
check point scheme builds an MxFunct i on evaluating
n_cp collocation points at the same time, so that the
packed MXFunct i on iscalled only n_e times. This ap-
proach improves the code generation and it is expected
to reduce the memory usage for constructing and solv-
ing the NLP.

quadr at ur e_constrai nt

True

Whether to use quadrature continuity constraints. This
option is only applicable when using Gauss colloca-
tion. It isincompatible with eliminate_der_var set to
True. True: Quadrature is used to get the values of the
states at the mesh points. False: The Lagrange basis
polynomials for the state collocation polynomials are
evaluated to get the values of the states at the mesh
points.

mut abl e_ext ernal _dat a

True

If true and the ext er nal _dat a option is used, the ex-
ternal data can be changed after discretization, e.g. dur-
ing warm starting.

explicit_hessian

False

Explicitly construct the Lagrangian Hessian, rather
than rely on CasADi to automatically generate it.
Thisisonly doneto circumvent abug in CasADi, see
#4313, which rarely causes the automatic Hessian to be
incorrect.
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Option Default Description

or der "default” Order of variables and equations. Requires
write_scaled result! Possible values: "default”, "re-
verse", and "random”

The last standard options, 1 POPT_opt i ons and WORHP_opt i ons, Serve as interfaces for setting options in |POPT
and WORHP. To exemplify the usage of these algorithm options, the maximum number of iterations in IPOPT
can be set using the following syntax:

opts = nodel . optim ze_options()
opts[" I POPT_options"]["max_iter"] = 10000

OCT's CasADi-based framework does not support simulation and initialization of models. It is recommended to
use PyFMI for these purposes instead.

Some statistics from the NLP solver can be obtained by issuing the command

res_opt.get_sol ver_statistics()

The return argument of this function can be found by using the interactive help:

hel p(res_opt.get_sol ver _statistics)
Get nonlinear progranm ng sol ver statistics.

Returns::

return_status --
Return status from nonlinear progranm ng sol ver.

nbr _iter --
Nunber of iterations.

obj ective --
Fi nal val ue of objective function.

total _exec_tinme --
Execution tine.

6.5.1.1. Reusing the same discretization for several optimization solutions

When collocation is used to solve adynamic optimization problem, the solution procedureis carried out in several
steps:

« Discretize the dynamic optimization problem, which is formulated in continuous time. The result isalarge and
sparse nonlinear program (NLP). The discretization step depends on the options as provided to the opt i mi ze
method.
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» Solvethe NLP.
 Postprocess the NLP solution to extract an approximate solution to the original dynamic optimization problem.

Depending on the problem, discretization may account for a substantial amount of the total solution time, or even
dominate it.

The same discretization can be reused for several solutions with different parameter values, but the same op-
tions. Discretization will be carried out each timethe opt i mi ze method is called on the model. Instead of calling
nodel . opti mi ze(opti ons=opt s), aproblem can be discretized using the pr epar e_opt i ni zat i on method:

sol ver = nodel . prepare_optim zati on(opti ons=opt s)

Alternatively, the solver can be retrieved from an existing optimization result, assol ver = res. get _sol ver().
Manipulating the solver (e.g. setting parameters) may affect the original optimization problem object and vice
versa,

The obtained solver object represents the discretized problem, and can be used to solveit using itsown opt i mi ze
method:

res = solver.optimze()

While options cannot be changed in general, parameter values, initial trajectories, external data, and NLP solver
options can be changed on the solver object. Parameter values can be updated with

sol ver . set (par anet er _nane, val ue)

and current values retrieved with

sol ver . get ( par anet er _nan®e)

New initial trajectories can be set with

solver.set _init_traj(init_traj)

whereinit _traj hasthe sameformat as used with thei nit _t raj option.
External data can be updated with

sol ver. set _external _vari abl e_dat a(vari abl e_nanme, data)

(unlessthe nut abl e_ext er nal _dat a option isturned off). var i abl e_name should correspond to one of the vari-
ables used in the ext er nal _dat a option passed to pr epar e_opt i ni zat i on. dat a should be the new data, in the
same format as variable data used in the ext er nal _dat a option. The kind of external data used for the variable
(eliminated/constrained/quadratic penalty) is not changed.

Settings to the nonlinear solver can be changed with
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sol ver. set_sol ver _option(sol ver _nane, nane, val ue)

wheresol ver _nane iseg' | POPT' Or ' WORHP' .

6.5.1.2. Warm starting

The solver object obtained from pr epar e_opt i m zat i on can aso be used for warm starting, where an obtained
optimization solution (including primal and dual variables) isused astheinitial guessfor anew optimization with
new parameter values.

To reuse the solver's last obtained solution asinitial guess for the next optimization, warm starting can be enabled
with

sol ver.set_warm start (True)

before calling sol ver. optinize(). This will reuse the last solution for the primal variables (unless
sol ver.set_init_traj wascaled sincethelast sol ver. opti i ze) aswell asthelast solution for the dual vari-
ables.

When using the IPOPT solver with warm starting, several solver options typically also need to be set to see the
benefits, e g:

def set_warm start_options(solver, push=le-4, mu_init=1e-1):

sol ver.set _sol ver_option(' | POPT', "warmstart _init_point', 'yes')

sol ver.set_sol ver_option('IPOPT', "mu_init', nu_init)

sol ver.set_sol ver _option(' I POPT', 'warmstart_bound_push', push)

sol ver.set _sol ver_option(' | POPT', '"warm start_nult_bound_push', push)
sol ver.set_sol ver _option(' I POPT', '"warmstart_bound_frac', push)

sol ver. set _sol ver _option(' | POPT', 'warm start_slack_bound_frac', push)
sol ver.set _sol ver _option(' | POPT', 'warmstart_slack_bound_push', push)

set _warm start_options(sol ver)

Smaller values of the push and nu arguments will make the solver place more trust in that the sought solution is
closeto theinitial guess, i g, the last solution.

6.5.2. Examples

6.5.2.1. Optimal control

Thistutorial is based on the Hicks-Ray Continuously Stirred Tank Reactors (CSTR) system. The model was orig-
inally presented in [1]. The system hastwo states, the concentration, ¢, and the temperature, T. The control input to
the system is the temperature, Tc, of the cooling flow in the reactor jacket. The chemical reaction in the reactor is
exothermic, and also temperature dependent; high temperature results in high reaction rate. The CSTR dynamics
are given by:
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c(t) —M-ko (t)e—EdlvR/T(t)
: Fo(TT(E)  dHk
T(t) =_0( 8 ©) pCo;(t) EdvR/T(t)+rpC (Tc(t)-T(t))

Thistutorial will cover the following topics:

» How to solveaDAE initialization problem. Theinitialization model has equations specifying that all derivatives
should be identically zero, which implies that a stationary solution is obtained. Two stationary points, corre-
sponding to different inputs, are computed. We call the stationary points A and B respectively. Point A corre-
spondsto operating conditionswhere the reactor is cold and the reaction rateislow, whereas point B corresponds
to a higher temperature where the reaction rate is high.

* Anoptimal control problem is solved where the objective isto transfer the state of the system from stationary
point A to point B. The challengeisto ignite the reactor while avoiding uncontrolled temperature increases. It is
also demonstrated how to set parameter and variable valuesin amodel. Moreinformation about the simultaneous
optimization algorithm can be found at OCT API documentation.

» The optimization result is saved to file and then the important variables are plotted.

The Python commands in this tutorial may be copied and pasted directly into a Python shell, in some cases with
minor modifications. Alternatively, you may copy the commandsinto atext file, e.g., cstr_casadi . py.

Start the tutorial by creating aworking directory. In your installation there is a directory named install, within that
folder you find the filepath Pyt hon/ pyj mi / exanpl es/ fi | es/ CSTR. nop, copy thisfile to your working directory.
If you choose to create a Python script file, save that as well to the working directory.

Compile and instantiate a model object

The functions and classes used in the tutorial script need to be imported into the Python script. This is done by
the following Python commands. Copy them and paste them either directly into your Python shell or, preferably,
into your Python script file.

import nunpy as N
import matplotlib. pyplot as plt

from pynodel i ca i nport conpile_fnu

frompyfm inport |oad_fmu
frompyjm inmport transfer_optim zation_probl em

To solvetheinitialization problem and simulate the model, wewill first compileit asan FMU and load it in Python.
These steps are described in more detail in Section 4.

# Conpile the stationary initialization nodel into an FMJ
init_fru = conpile_frnu("CSTR CSTR_Init", "CSTR. nop")

# Load the FMJ
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init_nodel = |oad_fru(init_fmu)

At this point, you may open the file CSTR. nop, containing the CSTR model and the static initialization model
used in this section. Study the classes CSTR. CSTRand CSTR. CSTR_I ni t and make sure you understand the models.
Before proceeding, have alook at the interactive help for one of the functions you used:

hel p(conpi | e_f mu)
Solve the DAE initialization problem

In the next step, we would like to specify the first operating point, A, by means of a constant input cooling tem-
perature, and then solve the initialization problem assuming that all derivatives are zero.

# Set input for Stationary point A
Tc_0_A = 250
init_nodel.set('Tc', Tc_0_A)

# Solve the initialization problemusing FM
init_nodel.initialize()

# Store stationary point A
[c_.OA TOA =init_nodel.get(['c', "T])

# Print some data for stationary point A
print(' *** Stationary point A ***')
print('Tc = %' % Tc_0_A)

print(‘c = %' %c_0_A

print(‘T =%"' %T_0_A

Notice how the method set isused to set the value of the control input. Theinitialization algorithm isinvoked by
caling the method i ni ti al i ze, which returns aresult object from which the initialization result can be accessed.
The values of the states corresponding to point A can then be extracted from the result object. Look carefully at
the printouts in the Python shell to see the stationary values. Display the help text for thei ni ti al i ze method and
take a moment to look it through. The procedure is now repeated for operating point B:

# Set inputs for Stationary point B

init_nodel .reset() # reset the FMJ so that we can initialize it again
Tc_0_B = 280

init_pnodel.set('Tc', Tc_0_B)

# Solve the initialization problemusing FM
init_nodel.initialize()

# Store stationary point B
[c.OB TOB] =init_nodel.get(['c', '"T'])

# Print some data for stationary point B
print(' *** Stationary point B ***")
print('Tc = %' % Tc_0_B)

print(‘c = %' %c_0_B)
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print(‘T =%"' %T_0_B)

We have now computed two stationary points for the system based on constant control inputs. In the next section,
these will be used to set up an optimal control problem.

Solving an optimal control problem
The optimal control problem we are about to solveis given by

150

2 2
minumj (cref-c(£))?+ (T -T(¢)) "+ (T - Te() ) dt
0
subject to

230<u(t)=T.(t)<370
T(t) <350

and is expressed in Optimica format in the class CSTR. CSTR_Opt 2 in the CSTR. nop file above. Have alook at this
class and make sure that you understand how the optimization problem is formulated and what the objectiveis.

Direct collocation methods often require good initial guesses in order to ensure robust convergence. Also, if the
problem is non-convey, initialization is even more critical. Since initial guesses are needed for all discretized vari-
ables along the optimization interval, simulation provides a convenient meansto generate state and derivative pro-
filesgiven aninitial guessfor the control input(s). It isthen convenient to set up a dedicated model for computation
of initial trgjectories. In the model CSTR CSTR_I nit _Opti mi zat i on in the CSTR. nop file, astep input is applied
to the systemin order obtain aninitial guess. Notice that the variable namesin theinitialization model must match
those in the optimal control model.

First, compile the model and set model parameters:

# Conpile the optinmization initialization nodel
init_simfm = conmpile_frmu("CSTR CSTR Init_Optim zation", "CSTR nop")

# Load the nodel
init_simnodel = 1oad_fmu(init_simfnu)

# Set initial and reference val ues
init_simnodel.set('cstr.c_init', c_0_A)
init_simnodel.set('cstr.T_init', T_0_A)
init_simnodel.set('c_ref', c_0_B)
init_simnodel.set('T_ref', T_0_B)
init_simnodel.set('Tc_ref', Tc_0_B)

Having initialized the model parameters, we can simulate the model using the si mul at e function.

# Sinulate with constant input Tc
init_res = init_simnodel.sinmulate(start_tinme=0., final_tinme=150.)
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The method si mul at e first computes consistent initial conditions and then simulates the model in the interval 0to
150 seconds. Take a moment to read the interactive help for the si mul at e method.

The simulation result object is returned. Python dictionary access can be used to retrieve the variable tragjectories.

# Extract variable profiles
t_init_sim=init_res['time']
c_init_sim=init_res['cstr.c']
T init_sim=init_res['cstr.T]
Tc_init_sim=init_res['cstr.Tc']

# Plot the initial guess trajectories
plt.close(l)

plt.figure(l)

plt.subplot(3, 1, 1)

plt.plot(t_init_sim c_init_sim

plt.grid()

pl t.yl abel (' Concentration')

plt.title('Initial guess obtained by simulation')

plt.subplot(3, 1, 2)
plt.plot(t_init_sim T_init_sim
plt.grid()

pl t.yl abel (' Tenperature')

plt.subplot(3, 1, 3)
plt.plot(t_init_sim Tc_init_sim
plt.grid()

plt.ylabel (' Cooling tenperature')
plt.xl abel ("tinme')

plt.show()

Look at the plots and try to relate the trgjectories to the optimal control problem. Why is this a good initial guess?

Once theinitial guessis generated, we compile the optimal control problem:

# Conpile and | oad optim zation probl em
op = transfer_optinizati on_probl en{" CSTR CSTR_Opt 2", "CSTR nop")

We will now initialize the parameters of the model so that their values correspond to the optimization objective
of transferring the system state from operating point A to operating point B. Accordingly, we set the parameters
representing the initial values of the states to point A and the reference values in the cost function to point B:

# Set reference val ues
op.set('Tc_ref', Tc_0_B)
op.set('c_ref', float(c_0_B))
op.set('T_ref', float(T_0_B))

# Set initial values
op.set('cstr.c_init', float(c_0_A))
op.set('cstr.T_init', float(T_0_A))
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We will also set some optimization options. In this case, we decrease the number of finite elements in the mesh
from 50 to 19, to be able to illustrate that simulation and optimization might not give the exact sameresult. Thisis
done by setting the corresponding option and providing it as an argument to the opt i ni ze method. We also lower
the tolerance of IPOPT to get a more accurate result. We are now ready to solve the actual optimization problem.
Thisis done by invoking the method opt i ni ze:

# Set options
opt _opts = op.optin ze_options()
opt_opts['n_e'] = 19 # Nunber of el enents

opt_opts['init_traj'] =init_res

opt_opts['nom nal _traj'] = init_res

opt _opts[' I POPT_options']['tol'] = 1le-10
opt_opts['IPOPT options']['linear_solver'] = "nunps"

# Sol ve the optimal control problem
res = op.optimze(options=opt_opts)

Y ou should see the output of IPOPT in the Python shell as the algorithm iterates to find the optimal solution.
IPOPT should terminate with amessage like 'Optimal solution found' or 'Solved to acceptable level’ in order for an
optimum to have been found. The optimization result object isreturned and the optimization dataare storedinr es.

We can now retrieve the tragjectories of the variables that we intend to plot:

# Extract variable profiles
c_res =res['cstr.c']

T_res res['cstr.T]
Tc_res = res['cstr.Tc']
time_res =res['tine']
c_ref =res['c_ref']

Tref =res['T_ref']

Tc_ref = res['Tc_ref']

Finally, we plot the result using the functions available in matplotlib:

# Plot the results

plt.close(2)

plt.figure(2)

plt.subplot(3, 1, 1)
plt.plot(tine_res, c_res)
plt.plot(tine_res, c_ref, '--")
plt.grid()

plt.yl abel (' Concentration')
plt.title('Optimized trajectories')

plt.subplot(3, 1, 2)
plt.plot(tine_res, T_res)
plt.plot(tine_res, T ref, '--")
plt.grid()

pl t.yl abel (' Tenperature')
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plt.subplot(3, 1, 3)
plt.plot(tine_res, Tc_res)
plt.plot(tinme_res, Tc_ref, '--')
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("time'")

plt.show()

Y ou should now see the plot shown in Figure 6.2.

Optimized trajectories

Concentration

2‘0 4‘0 éO tiérr?e 160 léO 1210 160
Figure 6.2 Optimal profilesfor the CSTR problem.

Take a minute to analyze the optimal profiles and to answer the following questions:
1. Why isthe concentration high in the beginning of the interval ?

2. Why isthe input cooling temperature high in the beginning of the interval ?

Verify optimal control solution

Solving optimal control problems by means of direct collocation implies that the differential equation is approxi-
mated by a time-discrete counterpart. The accuracy of the solution is dependent on the method of collocation and
the number of elements. In order to assess the accuracy of the discretization, we may simulate the system using the
optimal control profile asinput. With this approach, the state profiles are computed with high accuracy and the re-
sult may then be compared with the profiles resulting from optimization. Notice that this procedure does not verify
the optimality of the resulting optimal control profiles, but only the accuracy of the discretization of the dynamics.

We start by compiling and loading the model used for simulation:
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# Conpi | e nodel
simfm = conpile_fm("CSTR CSTR', "CSTR nop")

# Load nodel
sim nmodel = | oad_f nu(si mfnu)

The solution obtained from the optimization are values at afinite number of time paints, in this case the collocation
points. The CasADi framework also supports obtaining all the collocation polynomials for all the input variables
in the form of a function instead, which can be used during simulation for greater accuracy. We obtain it from the
result object in the following manner.

# Get optimzed input
(_, opt_input) = res.get_opt_input()

We specify theinitial values and simulate using the optimal trajectory:
# Set initial values

simnodel .set('c_init', c_0_
simnodel .set('T_init', T_0_

=2

# Sinulate using optimzed input
simopts = simnodel.sinulate_options()
simopts[' CVode_options']['rtol"]
simopts[' CVode_options']["'atol"'] le-8
res = simnodel.sinmulate(start_time=0., final_tine=150.,

i nput=('Tc', opt_input), options=simopts)

Finally, we load the smulated data and plot it to compare with the optimized trajectories:

# Extract variable profiles
c_simrres['c']

T sinmrres['T']

Tc_sinrres[' Tc']
time_sim=res['tine']

# Plot the results

plt.figure(3)

plt.clf()

pl t.subpl ot (311)
plt.plot(tine_res,c_res,'--")
plt.plot(tinme_simc_sim
plt.legend(('optimzed',"'simnmulated))
plt.grid()

pl t.yl abel (' Concentration')

pl t. subpl ot (312)
plt.plot(tine_res, T _res,'--")
plt.plot(tine_simT_sim
plt.legend(('optimzed',"'sinmulated'))
plt.grid()

plt.yl abel (' Tenperature')
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pl t. subpl ot (313)

plt.plot(tinme_res, Tc_res,'--")
plt.plot(tine_simTc_sim
plt.legend(('optimzed,"'simlated))
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("tinme'")

plt.show()

Y ou should now see the plot shown in Figure 6.3.

Verification

- - optimized|]
700F i ; ; ; ; — simulated ]

Concentration

0 20 40 60 80 100 120 140 160
time

Figure 6.3 Optimal control profiles and simulated trajectories corresponding to the optimal control input.
Discuss why the simulated trajectories differ from their optimized counterparts.

Exercises

After completing the tutorial you may continue to modify the optimization problem and study the results.
1. Removethe constraint on cst r. T. What is then the maximum temperature?

2. Play around with weights in the cost function. What happens if you penalize the control variable with a larger
weight? Do a parameter sweep for the control variable weight and plot the optimal profilesin the same figure.

3. Add terminal constraints (cst r. T(fi nal Ti me) =sonePar arret er ) for the states so that they are equal to point
B at the end of the optimization interval. Now reduce the length of the optimization interval. How short can
you make the interval ?
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4. Try varying the number of elementsin the mesh and the number of collocation pointsin each interval.
References

[1] G.A. Hicks and W.H. Ray. Approximation Methods for Optimal Control Synthesis. Can. J. Chem. Eng.,
40:522-529, 1971.
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6.5.2.2. Minimum time problems

Minimum time problems are dynamic optimization problems where not only the control inputs are optimized,
but also the final time. Typically, elements of such problemsinclude initial and terminal state constraints and an
objective function where the transition time is minimized. The following example will be used to illustrate how
minimum time problems are formulated in Optimica. We consider the optimization problem:

mint
)

subject to the Van der Pol dynamics:

X =(1-x3)x;-x3+u, x,(0)=0

X, =x, x(0)=1

and the constraints:

x(tr) =0, x(tr)=0

-1su(p) <1

This problem is encoded in the following Optimica specification:

optim zation VDP_Opt _M n_Ti me (objective = finalTine,
startTine = 0,
final Ti me(free=true, m n=0.2,initial Guess=1))

/'l The states

Real x1(start
Real x2(start

0, fi xed=true);
1, fixed=true);

/1 The control signal
i nput Real u(free=true, m n=-1, max=1);

equati on
/1 Dynam c equati ons
der(x1) = (1 - x272) * x1 - x2 + u;
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der (x2) = x1,;

constrai nt
/1 term nal constraints
x1(fi nal Ti ne) =0;
x2(final Ti me) =0;

end VDP_Opt _M n_Ti ne;

Noticehow theclassattributef i nal Ti ne isset to befreein the optimization. The problemissolved by thefollowing
Python script:

# |l nport nunerical libraries
import nunpy as N
import matplotlib. pyplot as plt

# |l nport the OCT Python packages

from pynodelica i nport conpile fnu

frompyfm inport |oad_fnmnu

frompyjm inport transfer_optim zation_problem

vdp
res

transfer_optim zation_probl en("VDP_Opt_M n_Ti ne", "VDP_Opt_M n_Ti nme. nop")
vdp. opti m ze()

# Extract variable profiles
xl=res['x1']

x2=res[' x2']

u=res['u']

t=res['time']

# Pl ot
plt.figure(l)
plt.clf()

pl t. subpl ot (311)
plt.plot(t,x1)
plt.grid()
plt.ylabel ('x1")

pl t. subpl ot (312)
plt.plot(t,x2)
plt.grid()
plt.yl abel (' x2")

pl t. subpl ot (313)
plt.plot(t,u,'x-")
plt.grid()
plt.ylabel ("u")
plt.xlabel ("tinme')
plt.show()

The resulting control and state profiles are shown in Figure 6.4. Notice the difference as compared to Figure
Figure 6.1, where the Van der Pol oscillator system is optimized using a quadratic objective function.
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Figure 6.4 Minimum time profiles for the Van der Pol Oscillator.

6.5.2.3. Optimization under delay constraints

In some applications, it can be useful to solve dynamic optimization problems that include time delays in the
model. Collocation based optimization schemes are well suited to handle thiskind of models, since the whole state
trajectory is available at the same time. The direct collocation method using CasADi contains an experimental
implementation of such delays, which we will describe with an example. Please note that the implementation of
this feature is experimental and subject to change.

We consider the optimization problem

1
T(it?gmx(t)ﬁ u(9+ u(ty) dt

subject to the dynamics

K(O=u(0) 2u,(0)
up(t)=uy(t 'tdelay)

and the boundary conditions

x(0)=1
x(1)=0
le(t) =0.2 5, t <tdelay
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The effect of positive u; isinitialy to increase x, but after atime delay of time t4ej,y, it comes back with twice
the effect in the negative direction through u,,.

We model everything except the delay constraint in the Optimica specification

optim zation Del ayTest(startTinme = 0, final Tine = 1,
obj ectivel ntegrand = 4*x"2 + ul”2 + u2/2)
input Real ul, u2;
Real x(start = 1, fixed=true);
equati on
der(x) = ul - 2*u2;
constrai nt
x(final Timre) = O;
end Del ayTest;

The problem is then solved in the following Python script. Notice how the delay constraint is added using the
del ayed_f eedback option, and theinitial part of u, is set using thei ni ti al Guess éttribute:

# lmport nunerical |ibraries

i mport numpy as np
import matplotlib. pyplot as plt

# | nport OCT Python packages
frompyjm inmport transfer_optim zation_problem

n_e = 20
delay n e =5
horizon = 1.0
del ay = horizon*delay n_e/n_e

# Conpile and | oad optim zati on probl em

opt = transfer_optim zation_probl en{"Del ayTest", "Del ayedFeedbackOpt. nop")

# Set value for u2(t) when t < del ay
opt.getVariable('u2').setAttribute('initialGuess', 0.25)

# Set al gorithm options

opts = opt.optim ze_options()

opts['n_e'] = n_e

# Set del ayed feedback fromul to u2

opts[' del ayed_feedback'] = {'u2': ('ul', delay_n_e)}

# Optimze
res = opt.optim ze(opti ons=opts)

# Extract variable profiles
x_res = res['x"]

ul res res['ul']

u2_res res['u2']

time_res = res['tine']
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# Plot results
plt.plot(tine_res, x_res, tine_res, ul res, tine_res, u2_res)

plt.plot(tinme_res+delay, ul_res, '--")
plt.legend(('x', "ul', 'u2', 'delay(ul)'))
plt.show()

The resulting control and state profiles are shown in Figure 6.5. Notice that x grows initially since u; is set positive
to exploit the greater control gain that appears delayed through u,. Attime 1 -ty the delayed value of u; ceases
to influence x within the horizon, and u, immediately switches sign to drive down x to itsfinal valuex(1) = 0.

15
— X
— ul
1.0
— u2
- - delay(ul)
0.5} ‘ i
I
I
I
0.0t
|
I
I
-0.5} w
1
I
I
—-1.0} “
I
! -
15} /’l‘ ///,
295 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 6.5 Optimization result for delayed feedback example.
6.5.2.4. Parameter estimation

Inthistutorial it will be demonstrated how to solve parameter estimation problems. We consider a quadruple tank
system depicted in Figure 6.6.
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Figure 6.6 A schematic picture of the quadruple tank process.

The dynamics of the system are given by the differential equations:

"%\/29_)(1 \/257*' A U
X, ='%\/29_Xz \/257"' iy Uz
X3 =-7; \/257 + S ZZ)kZ up
Xy = 29X4+(12]Jk1“1

Where the nominal parameter values are given in Table 6.3.

Table 6.3 Parameters for the quadruple tank process.

Parameter name Value Unit
A 49 cm?
aj 0.03 cm?
i 0.56 cm?vist
# 0.3 vem?t

The states of the model are the tank water levels x1, x2, x3, and x4. The control inputs, ul and u2, are the flows
generated by the two pumps.
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The Modelicamodel for the system islocated in QuadTankPack.mop. Download thefile to your working directory
and open it in atext editor. Locate the class QuadTankPack. QuadTank and make sure you understand the model.
In particular, notice that all model variables and parameters are expressed in Sl units.

Measurement data, available in qt _par_est _dat a. mat , has been logged in an identification experiment. Down-
load also thisfile to your working directory.

Open atext fileand nameit gt _par _est _casadi . py. Then enter the imports:

i mport os
from collections inport O deredDict

fromscipy.io.matlab.mo inport |oadmat
import matplotlib. pyplot as plt
import nunpy as N

from pynodelica i nport conpile fnu

frompyfm inport |oad_fnmnu

frompyjm inport transfer_optim zation_problem

from pyjm .optim zation.casadi _col | ocati on inmport External Data

into the file. Next, we compile the model, which is used for simulation, and the optimization problem, which is
used for estimating parameter values. We will take a closer look at the optimization formulation later, so do not
worry about that one for the moment. The initial states for the experiment are stored in the optimization problem,
which we propagate to the model for simulation.

# Conpile and | oad FMJ, which is used for sinulation
nodel = | oad_f mu(conpil e_fnu(' QuadTankPack. QuadTank', "QuadTankPack. mop"))

# Transfer problemto CasAD Interface, which is used for estimation
op = transfer_optim zation_probl en(" QuadTankPack. QuadTank_Par Est CasADi ",
"QuadTankPack. nop")

# Set initial states in nodel, which are stored in the optin zation problem
Xx_0 _names = ['x1_0', 'x2. 0", 'x3 0, 'x4.0']

x_0_val ues = op. get (x_0_nanes)

nodel . set (x_0_nanes, x_0_val ues)

Next, we enter code to open the data file, extract the measurement time series and plot the measurements:

# Load neasurenent data fromfile
data = | oadnmat ("qt_par_est_data. mat", appendnmat =Fal se)

# Extract data series
t_nmeas = data['t'][6000::100, 0] - 60

yl neas = data['yl f'][6000::100, 0] / 100
y2_neas = data['y2 f'][6000::100, 0] / 100
y3_neas = data['y3_d'][6000::100, 0] / 100
y4 _neas = data['y4_d'][6000::100, 0] / 100
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ul
u2

= data['ul_d'][6000::100, O]
= data['u2_d'][6000::100, O]
# Pl ot neasurenents and inputs
plt.cl ose(1)

plt.figure(l)

plt.subplot(2, 2, 1)
plt.plot(t_neas, y3_neas)
plt.title('x3")

plt.grid()

plt.subplot(2, 2, 2)
plt.plot(t_neas, y4_neas)
plt.title('x4")

plt.grid()

plt.subplot(2, 2, 3)
plt.plot(t_neas, yl neas)
plt.title('x1")

plt.xlabel ("t[s]")

plt.grid()

plt.subplot(2, 2, 4)
plt.plot(t_neas, y2_neas)
plt.title('x2")

plt.xlabel ("t[s]"')

plt.grid()

plt.close(2)
plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_neas, ul)
plt.title(' ul")
plt.grid()
plt.subplot(2, 1, 2)
plt.plot(t_neas, u2)
plt.title(' u2")
plt.xlabel ("t[s]"')
plt.grid()
plt.show()

Y ou should now see two plots showing the measurement state profiles and the control input profiles similar to
Figure 6.7 and Figure 6.8.
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Figure 6.7 Measured state profiles.

ul
6.2 T

Figure 6.8 Control inputs used in the identification experiment.

In order to evaluate the accuracy of nominal model parameter values, we simulate the model using the same ini-
tial state and inputs values as in the performed experiment used to obtain the measurement data. First, a matrix
containing the input trajectoriesis created:

# Build input trajectory matrix for use in sinulation
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u = N.transpose(N. vstack([t_meas, ul, u2]))

Now, the model can be simulated:

# Simul ate nodel response with nom nal paraneter val ues
res_sim= nodel.simulate(input=(['ul", "u2'], u),
start_tinme=0., final _tine=60.)

The simulation result can now be extracted:

# Load sinmulation result
x1_sim= res_sinf'xl"]
x2_sim=res_sin|'x2"]
x3_sim= res_sin]'x3"]
x4_sim=res_sin|'x4']
t_sim =res_sin'tine']
ul sim=res_sin{'ul']
u2_sim=res_sinf'u2']

and then plotted:

# Plot sinmulation result
plt.figure(l)
plt.subplot(2, 2, 1)
plt.plot(t_sim x3_sim
plt.subplot(2, 2, 2)
plt.plot(t_sim x4_sim
plt.subplot(2, 2, 3)
plt.plot(t_sim x1_sim
plt.subplot(2, 2, 4)
plt.plot(t_sim x2_sim

plt.figure(2)

plt.subplot(2, 1, 1)
plt.plot(t_sim ul sim 'r")
plt.subplot(2, 1, 2)
plt.plot(t_sim u2_sim 'r'")
plt.show()

Figure 6.9 shows the result of the simulation.
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Figure 6.9 Simulation result for the nominal model.

Here, the simulated profiles are given by the green curves. Clearly, there isamismatch in the response, especially
for the two lower tanks. Think about why the model does not match the data, i.e., which parameters may have
wrong values.

The next step towards solving a parameter estimation problem is to identify which parametersto tune. Typicaly,
parameters which are not known precisely are selected. Also, the sel ected parameters need of course affect the mis-
match between model response and data, when tuned. In afirst attempt, we aim at decreasing the mismatch for the
two lower tanks, and therefore we sel ect the lower tank outflow areas, al and a2, as parametersto optimize. The Op-
timica specification for the estimation problem is contained in the class uadTank Pack. QuadTank_Par Est CasADi :

optim zati on QuadTank_Par Est CasADi (start Ti mre=0, fi nal Ti me=60)

ext ends QuadTank(x1(fixed=true), x1_0=0.06255,
x2(fixed=true), x2_0=0.06045,
x3(fixed=true), x3_0=0.02395,
x4(fixed=true), x4_0=0.02325,
al(free=true, mn=0, nmax=0.1le-4),
a2(free=true, m n=0, nax=0.1e-4));

end QuadTank_Par Est CasADi ;

We have specified the time horizon to be one minute, which matches the length of the experiment, and that we
want to estimate al and a2 by setting f r ee=t r ue for them. Unlike optimal control, the cost function is not specified
using Optimica. Thisisinstead specified from Python, using the Ext er nal Dat a class and the code below.

# Create external data object for optimzation
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Q= Ndiag([1., 1., 10., 10.])
data_x1 = N.vstack([t_neas, yl neas])

data_x2 = N. vstack([t_neas, y2_mneas])
data_ul = N.vstack([t_neas, ul])
data_u2 = N vstack([t_neas, u2])

quad_pen = OrderedDict ()

quad_pen['x1'] = data_x1
quad_pen['x2'] = data_x2
quad_pen['ul'] = data_ul
quad_pen['u2'] = data_u2

external _data = External Dat a(@=Q quad_pen=quad_pen)

Thiswill create an objective which is the integral of the squared difference between the measured profiles for x1
and x2 and the corresponding model profiles. We will aso introduce corresponding penalties for the two input
variables, which areleft as optimization variables. It would also have been possible to eliminate the input variables
from the estimation problem by using the el i mi nat ed parameter of Ext er nal Dat a. See the documentation of
Ext er nal Dat a for how to do this. Finally, we use a square matrix Q to weight the different components of the
objective. We choose larger weights for the inputs, as we have larger faith in those values.

We are now ready to solve the optimization problem. We first set some options, where we specify the number of
elements (time-discretization grid), the external data, and also provide the simulation with the nominal parameter
valuesasan initial guessfor the solution, which is also used to scale the variables instead of the variables nominal
attributes (if they have any):

# Set optimzation options and optim ze

opts = op.optinize_options()

opts['n_e'] = 60 # Nunber of collocation el ements
opts['external _data'] = external _data

opts['init_traj'] =res_sim

opts['nom nal _traj'] = res_sim

res = op.optimze(options=opts) # Sol ve estimation problem

Now, let's extract the optimal values of the parameters al and a2 and print them to the console:
# Extract estimated val ues of paraneters

al_opt = res.initial("al")

a2 _ opt =res.initial("a2")

# Print estinmated paraneter val ues

print('al: ' + str(al_opt*le4) + 'cm2')

print('a2: ' + str(a2_opt*led) + 'cm2')

Y ou should get an output similar to:

al: 0.0266cm'2
a2: 0.0271cm\2

The estimated values are dlightly smaller than the nominal values - think about why this may be the case. Also
note that the estimated values do not necessarily correspond to the physicaly true values. Rather, the parameter
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values are adjusted to compensate for all kinds of modeling errors in order to minimize the mismatch between
model response and measurement data.

Next we plot the optimized profiles:

# Load state profiles

x1_opt = res["x1"]
x2_opt = res["x2"]
x3_opt = res["x3"]
x4_opt = res["x4"]
ul opt = res["ul"]
u2_opt = res["u2"]
t_opt =res["time"]

# Plot estimated trajectories
plt.figure(l)

plt.subplot(2, 2, 1)
plt.plot(t_opt, x3_opt, 'k')
plt.subplot(2, 2, 2)
plt.plot(t_opt, x4 _opt, 'k')
plt.subplot(2, 2, 3)
plt.plot(t_opt, x1_opt, 'k')
plt.subplot(2, 2, 4)
plt.plot(t_opt, x2_opt, 'k')

plt.figure(2)

plt.subplot(2, 1, 1)
plt.plot(t_opt, ul_opt, 'k')
plt.subplot(2, 1, 2)
plt.plot(t_opt, u2_opt, 'k')
pl t.show()

Y ou will seethe plot shown in Figure 6.10.
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Figure 6.10 State profiles corresponding to estimated values of al and a2.

The profiles corresponding to the estimated values of al and a2 are shown in black curves. As can be seen, the
match between the model response and the measurement data has been significantly improved. |s the behavior of
the model consistent with the estimated parameter values?

Nevertheless, there is still a mismatch for the upper tanks, especially for tank 4. In order to improve the match, a
second estimation problem may be formulated, where the parameters al, a2, a3, a4 are free optimization variables,
and where the squared errors of all four tank levels are penalized. Do this as an exercise!

6.5.3. Investigating optimization progress

This section describes some tools that can be used to investigate the progress of the nonlinear programming solver
on an optimization problem. This information can be useful when debugging convergence problems; some of it
(e.g. dual variables) may also be useful to gain abetter understanding of the properties of an optimization problem.
To make sense of the information that can be retrieved, we first give an overview of the collocation procedure that
transcribes the optimization problem into a Nonlinear Program (NLP).

Methods for inspecting progress are divided into low level and high level methods, where the low level methods
provide details of the underlying NLP while the high level methods are oriented towards the optimization problem
as seen in the model formulation.

All functionality related to inspection of solver progress is exposed through the solver object as returned through
the pr epar e_opt i ni zat i on method. If the optimization has been done through the opt i m ze method instead, the
solver can be obtained asin

res = op.optim ze(opti ons=opts)
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sol ver = res. get_sol ver ()
6.5.3.1. Collocation

To be able to solve a dynamic optimization problem, it is first discretized through collocation. Time is divided
into elements (time intervals), and time varying variables are approximated by alow order polynomial over each
element. Each polynomial pieceis described by sample values at a number of collocation points (default 3) within
the element. The result is that each time varying variable in the model is instantiated into one NLP variable for
each collocation point within each element. Some variables may also need to be instantiated at additional points,
such astheinitia point which istypically not a collocation point.

The equationsin amodel are divided into initial equations, DAE equations, path constraints and point constraints.
These equations are also instantiated at different time points to become constraints in the NLP. Initial equations
and point constraints are instantiated only once. DAE equations and path constraints are instantiated at collocation
point of each element and possibly some additional points.

When using the methods described bel ow, each model equationisreferredtoasapair (eqt ype, egqi nd) . Thestring
eqtype may beeither initial',' dae',' path_eq',' path_ineq',' point_eq',0r"' point_ineq . Theequation
index eqi nd gives the index within the given equation type, and is a nonnegative integer less than the number of
equations within the type. The symbolic model equations corresponding to given pairs (eqt ype, eqi nd) can be
retrieved through the get _equat i ons method:

eq = sol ver. get _equati ons(eqtype, 0) # first equation of type eqtype
eqs = sol ver. get _equations(eqtype, [1,3]) # second and fourth equation
all _eqs = sol ver. get_equati ons(eqtype) # all equations of the given type

Apart from the model equations, collocation may also instantiate additional kinds of constraints, such as continuity
constraints to enforce continuity of states between elements and collocation constraints to prescribe the coupling
between states and their derivatives. These constraints have their own eqt ype strings. A list of all equation types
that are used in agiven model can be retrieved using

eqtypes = sol ver. get_constraint_types()
6.5.3.2. Inspecting residuals

Given a potential solution to the NLP, the residual of a constraint is a number that specifies how close it isto
being satisfied. For equalities, the residual must be (close to) zero for the solution to be feasible. For inequalities,
the residual must be in a specified range, typically nonpositive. The constraint violation is zero if the residua is
within bounds, and gives the signed distance to the closest bound otherwise; for equality constraints, this is the
same as the residual. Methods for returning residuals actually return the violation by default, but have an option
to get the raw residual.

For afeasible solution, al violations are (almost) zero. If an optimization converges to an infeasible point or does
not have time to converge to a feasible one then the residual s show which constraints the NLP solver was unable
to satisfy. If one problematic constraint comes into conflict with a number of constraints, al of them will likely
have nonzero violations.
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Residual values for a given equation type can be retrieved as a function of time through
r = sol ver.get_residual s(eqtype)

where r is an array of residuals of shape (n_ti mepoi nts, n_equations). There are also optional arguments:
i nds gives a subset of equation indices (e.g. i nds=[ 0, 1]), poi nt specifies whether to evaluate residuals at the
optimization solution (poi nt =" opt ', default) or the initial point (poi nt =" init'), and r aw specifies whether to
return constraint violations (r aw=Fal se, default) or raw residuas (r aw=Tr ue).

The corresponding time points can be retrieved with
t, i, k = solver.get_constraint_poi nts(eqtype)
wheret, i, and k are vectors that give the time, element index, and collocation point index for each instantiation.

To get an overview of which residuals are the largest,

sol ver. get _resi dual _norns()

returns alist of equation types sorted by descending residual norm, and

sol ver. get _resi dual _norns(eqtype)
returns alist of equation indices of the given type sorted by residual norm.

By default, the methods above work with the unscaled residuals that result directly from collocation. If the
equat i on_scal i ng option is turned on, the constraints will be rescaled before they are sent to the NLP solver.
It might be of more interest to look at the size of the scaled residuals, since these are what the NLP solver will
try to make small. The above methods can then be made to work with the scaled residuals instead of the unscaled
by use of the scal ed=Tr ue keyword argument. The residual scale factors can aso be retrieved in analogy to
sol ver. get _resi dual s through

scal es = sol ver. get _residual _scal es(eqtype)

and an overview of the residual scale factors (or inverse scale factors with i nv=Tr ue) can be gained from

sol ver. get _residual _scal e_norns()
6.5.3.3. Inspecting the constraint Jacobian

When solving the collocated NLP, the NLP solver typically has to evaluate the Jacobian of the constraint residual
functions. Convergence problems can sometimes be related to numerical problems with the constraint Jacobian.
In particular, Ipopt will never consider a potential solution if there are nonfinite (infinity or not-a-number) entries
in the Jacobian. If the Jacobian has such entries at the initial guess, the optimizer will give up completely.

The constraint Jacobian comes from the NLP. As seen from the original model, it contains the derivatives of the
model equations (and also e.g. the collocation eguations) with respect to the model variables at different time
points. If one or several problematic entries are found in the Jacobian, it is often helpful to know the model equation
and variable that they correspond to.
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The set of (model equation, model variable) pairs that correspond to nonfinite entries in the constraint Jacobian
can be printed with

sol ver. print_nonfinite_jacobian_entries()
or returned with

entries = solver.find_nonfinite_jacobian_entries()

There are a'so methods to allow to make more custom analyses of this kind. To instead list all Jacobian entries
with an absolute value greater than 10, one can use

J = solver.get_nlp_jacobian() # Get the raw NLP constraint Jacobian as a (sparse)
sci py.csc_matrix

# Find the indices of all entries with absol ute value > 10
J.data = abs(J.data) > 10
c_inds, xx_inds = N nonzero(J)

entries = sol ver.get_nodel jacobian_entries(c_inds, xx_inds) # Map the indices to equations
and vari ables in the nodel
sol ver.print_jacobian_entries(entries) # Print them

To get the Jacobian with residual scaling applied, usethe scal ed_r esi dual s=Tr ue option.

6.5.3.4. Inspecting dual variables

Many NLP solvers (including Ipopt) produce a solution that consists of not only the primal variables (the actual
NLP variables), but also one dual variable for each constraint in the NLP. Upon convergence, the value of each
dual variable givesthe change in the optimal objective per unit change in the residual. Thus, the dual variables can
give an idea of which constraints are most hindering when it comes to achieving alower objective value, however,
they must be interpreted in relation to how much it might be possible to change any given constraint.

Dual variable values for a given equation type can be retrieved as a function of time through
d = sol ver.get_constrai nt_dual s(eqtype)

in analogy to sol ver.get_residuals. To get constraint duals for the equation scaled problem, use the
scal ed=Tr ue keyword argument. Just aswith get _r esi dual s, the corresponding time points can beretrieved with

t, i, k = solver.get_constraint_poi nts(eqtype)

Besides regular constraints, the NL P can also contain upper and lower bounds on variables. These will correspond
to the Modelica mi n and max attributes for instantiated model variables. The dual variables for the bounds on a
given model variablevar can be retrieved as a function of time through

d = sol ver. get_bound_dual s(var)
The corresponding time points can be retrieved with

t, i, k = solver.get_variabl e_poi nts(var)
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6.5.3.5. Inspecting low level information about NLP solver progress

The methods described above generally hide the actual collocated NLP and only require to work with model vari-
ables and equations, instantiated at different points. There also exist lower level methodsthat exposethe NLP level
information and its mapping to the original model more directly, and may be useful for more custom applications.
These include

e get_nlp_vari abl es, get _nl p_resi dual s, get _nl p_bound_dual s, and get _nl p_constrai nt _dual s to get
raw vectors from the NL P solution.

e get_nl p_vari abl e_bounds andget _nl p_resi dual _bounds to get the corresponding bounds used in the NLP.
e get_nl p_residual _scal es to get the raw residual scale factors.

e get_nl p_variabl e_i ndi ces and get _nl p_const rai nt _i ndi ces to get mappings from model variables and
equations to their NL P counterparts.

e get_poi nt _ti me to get the times of collocation points(i, k).

e get_nodel _vari abl es and get _nmodel _const rai nt s to map from NLP variables and constraints to the corre-
sponding model variables and equations.

The low level constraint Jacobian methods get nl p_j acobi an, get _nodel _j acobi an_entries, and the
print_j acobi an_ent ri es method have already been covered in the section about jacobians above.

See the docstring for the respective method for more information.

6.5.4. Eliminating algebraic variables

When the algorithm of this section isused, it is applied on the full DAE, meaning that all of the algebraic variables
and equations are exposed to the numerical discretization and need to be solved by the NLP solver. It is often
beneficial to instead solve some of these algebraic equations in a symbolic pre-processing step. This subsection
describes how this can be done.

OCT has two different frameworks for performing such eliminations. The first one is not described in this User's
Guide, but an example demonstrating its use can be found in pyj i . exanpl es. ccpp_el i mi nati on. It isimple-
mented as a part of CasADi Interface, whereas the second framework, which is the focus of this subsection, is
implemented in Python. The elimination framework in CasADi Interface has faster pre-processing, but has limita-
tions regarding what kind of algebraic variables it can eliminate and also lacks important features such as tearing
and sparsity preservation. For more details on the inner workings of the Python-based framework, see Chapter 4
in [Mag2016].

6.5.4.1. Basic use

To leave everything in the hands of the framework, simply transfer an optimization problem as per usual and use
the following Python code snippet.
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frompyjm.synbolic_elimnation inport BLTOpti m zati onProblem Elim nationOptions
op = transfer_optim zation_probl en(class_nane, file_nanme) # Regul ar conpilation
op BLTOpt i m zati onProbl en(op) # Synbolically elimnate al gebraic vari abl es

Y ou can then proceed as usual. There is however one caveat. The min and max attributes of eliminated algebraic
variables will not be respected. If this is undesired, these bounds should either be converted into constraints (not
recommended), or the corresponding variables should be marked as ineliminable as described in Section 6.5.4.2.

6.5.4.2. Small example

To demonstrate the wuse and effects of the framework, we consider the example
pyj m . exanpl es. el i ni nati on_exanpl e. Notethat this example isintended to be pedagogical, rather than show-
ing the performance gains of the techniques. For a real-world example where the framework offers significant
performance gains, see pyj ni . exanpl es. ccpp_sym el i m where the solution time is reduced by a factor of 5.

The following artificial Modelica and Optimica code is used in this example.

opti m zation Elim nati onExanpl e(fi nal Ti me=4,
obj ecti vel nt egrand=(x1- 0. 647) "2+x2"2+( u- 0. 0595) *2+(y1- 0. 289) *2)
Real x1(start=1, fixed=true);
Real x2(start=1, fixed=true);
Real yil(start=0.3, max=0.41);
Real y2(start=1);
Real y3(start=1);
Real y4(start=1);
Real y5(start=1);
i nput Real u;
equati on
der (x1) = x2;
der(x2) + yl + y2 - y3 = u;
x1*y3 + y2 - sqrt(x1l) - 2 = 0;
2*yl*y2*y4 - sqrt(x1l) = 0;
yl*y4 + sqrt(y3) - x1 - y4 = u;
y4 - sqrt(y5) = 0;
y57"2 - x1 = 0;
end Eli m nati onExanpl e;

We start as usual by transferring the optimization problem to CasADi Interface.
op = transfer_optin zati on_probl en{"El i m nati onExanpl e", file_path, conpiler_options={})

Next we prepare the symbolic elimination. An important part of thisisthe manual selection of algebraic variables
that are not allowed to be eliminated. In general, it is recommended to not eliminate the following variables:

» Variableswith potentially active bounds (min or max attributes). When variables are eliminated, their min
and max attributes are neglected. This is because many Modelica variables have min and max attributes that
are not intended to constrain the optimization solution. Preserving these bounds during elimination is highly
inefficient. Since thereisno way for the toolchain to know which variables may be actively constrained by their
min and max attributes, it is up to the user to provide the names of these variables.
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» Variablesthat occur in theabjectiveor constraints. Marking these variablesasineliminableislessimportant,
but can yield performance improvements.

« Variables that lead to numerically unstable pivots. When employing tearing, one runs the risk of causing
numerically unstable computations. This is difficult to predict, but experienced users may know that certain
variables should be selected for tearing to prevent instability, which can be achieved by marking them asinelim-
inable, which does not require a corresponding tearing residual to be chosen. Further details on manual tearing
is described in Section 6.5.4.4.

In our small example, the only thing we have to worry about is y1, which has an upper bound. To mark y1 as
ineliminable, we use the following code.

elimopts = ElimnationOptions()
elimopts['inelimnable'] = ['yl'] # List of variable nanes

Theelim_optsdictionary object isused to set any other elimination options, which are described in Section 6.5.4.5.
For now, we just enable the option to make a plot of the block-lower triangular (BLT) decomposition of the DAE
incidence matrix, which gives insight regarding the performed eliminations (see [Mag2016]).

elimopts['draw blt'] = True
elimopts['draw blt_strings'] = True

Now we are ready to symbolically transform the optimization problem.
op = BLTOpti m zati onProbl en(op, elimopts)
This prints the following simple problem statistics.

System has 5 al gebraic variables before elimnation and 4 after.
The three |argest BLT bl ocks have sizes 3, 1, and 1.

Since we enable the BLT drawing, we also get the following plot.

der(x1)
der(x2)

[ToNENR S M —
(Sq(y5)—X1) _ E > > >
(y4-sqrt(y5)) = @ | @

(((x1*y3)+y2)-sqrt(x1))-2) |= 0 () o

((((y1*y4) +sqrty3))x)yh) =u @@ @
(2 *y1)*y2)*y4)-sqrt(x1)) = o o0

der(x1) = x2 o
((der(x2)+y1)+y2)-y3) = u o000 ﬂ

-10 1 2 3 4 5 6 7
Figure 6.11 Simple example BLT decomposition.

The only variable we were able to eliminate was y4. For details on what all the colors mean in the figure, see
Section 6.5.4.3.
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6.5.4.3. The many colors of symbolic elimination

In the plots generated by enabling the option dr aw_bl t, linear (with respect to the block variables) incidences are
marked by green dots, and nonlinear incidences are marked by red dots. Thereisno distinction made between linear
and nonlinear incidences outside of the diagonal blocks. Hence, such incidences are marked by black dots. Torn
blocks are marked by red edges. Variables, and their respective matched equations, that have been user-specified
as actively bounded (and hence are not eliminated) are marked by orange edges. State variable derivatives (which
are not eliminated) and their respective matched equations are marked by blue edges. Blue edges are also used to
mark non-scalar blocks that have not been torn. Variable—equation pairs along the diagonal that are not sparsity
preserving are marked by yellow edges. The remaining variable—equation pairs along the diagonal are the ones
used for elimination, which are marked by green edges.

6.5.4.4. Tearing

By default, tearing is not used in the elimination. The use of tearing enablesthe elimination of variablesin agebraic
loops. In this example, we can also eliminate y2 through tearing. Tearing can either be done automatically or
manually. Manual tearing is performed on the Opt i i zat i onPr obl emobject, prior to symbolic transformation. To
eliminate y2, we select the other variables in the algebraic loop for y2—that is, y3 and y1—as tearing variables
asfollows.

op. get Vari abl e(' y1'). set Teari ng( True)
op. get Vari abl e(' y3'). set Teari ng(True)

We also have to select tearing residuals. Thisis less convenient, as there is no straightforward way to identify an
equation. We can either manually inspect the equations obtained from op. get DaeEquat i ons() , or search through
the string representations of all of them. We will adopt the second approach.

for eq in op_nanual . get DaeEquati ons():
eg_string = eq.getResidual ().repr()
if "yl)*y2)*y4)' in eq_string or 'yl*y4' in eq_string:
eq. set Teari ng( True)

Once the tearing selection is finished, the symbolic transformation can be performed as before by instantiating
BLTOpt i mi zati onProbl em

For this example, we can get the same result by automatic tearing, which is enabled during compilation. We pre-
viously used conpi | er _opti ons={}. By instead using

conpi l er _options = {'equation_sorting' : True, 'autonatic_tearing': True}

tearing will be performed automatically. This will mark the same variables and equations as tearing variables as
we just did manually. Hence, it may be a good idea to first perform tearing automatically and then make any
needed changes manually, rather than doing manual tearing from scratch. Automatic tearing will yield satisfactory
performance for most problems, so manual tearing is only recommended for experts. For this example, we can also
eliminate y1 through manual tearing, but since we have abound on y1, thisis not recommended anyway.
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6.5.4.5. Available options

The standard elimination optionsarelisted below. All of these have been explained in the above subsections, except
for the last two related to sparsity preservation. A higher density tolerance will allow for the elimination of more
algebraic variables, but the resulting DAE will be more dense. This parameter thus allows a trade-off between the
sparsity and dimension of the DAE, both of which affect the performance of the optimization.

Table 6.4 Standard options for the symboalic elimination.

Option Default Description
draw bl t False Whether to plot the BLT form.
draw bl t_strings False Whether to annotate plot of the BLT form with strings
for variables and equations.
tearing True Whether to tear algebraic loops.
i nel i ni nabl e 11 List of names of variables that should not be eliminat-

ed. Particularly useful for variables with bounds.

dense_neasure Imfi’ Density measure for controlling density in causal-
ized system. Possible values: ['Imfi’, 'Markowitz.
Markowitz uses the Markowitz criterion and Imfi uses
local minimum fill-in to estimate density.

dense_t ol 15 Tolerance for controlling density in causalized system.
Possible values: [-inf, inf]

The below table lists the experimental and debugging elimination options, which should not be used by the typical
user.

Table 6.5 Experimental and debugging options for the symbolic elimination.

Option Default Description

pl ots False Whether to plot intermediate results for matching and
component computation.

sol ve_bl ocks False Whether to factorize coefficient matrices in non-scalar,
linear blocks.

sol ve_torn_linear_bl ockkalse Whether to solve causalized equations in torn blocks,
rather than doing forward substitution as for nonlinear
blocks.

inline True Whether to inline function calls (such as creation of
linear systems).

l'i near _sol ver "symbolicqr" Which linear solver to use. See http://

casadi.sourceforge.net/api/html/d8/d6a/
classcasadi_1 1L inearSolver.html for possibilities
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Option Default Description
closed_form False Whether to create a closed form expression for residu-
als and solutions. Disables computations.
i nline_sol ved False Whether to inline solved expressionsin the closed
form expressions (only applicableif closed_form ==
True).

6.6. Derivative-Free Model Calibration of FMUs

Figure 6.12 The Furuta pendulum.

This tutorial demonstrates how to solve a model calibration problem using an algorithm that can be applied to
Functional Mock-up Units. The model to be calibrated is the Furuta pendulum shown in Figure 6.12. The Furuta
pendulum consists of an arm rotating in the horizontal plane and a pendulum which is free to rotate in the verti-
cal plane. The construction has two degrees of freedom, the angle of the arm, ¢, and the angle of the pendulum,
6. Copy the file $JMODELI CA_HOVE/ Pyt hon/ pyj mi / exanpl es/ fi | es/ FMJUs/ Fur ut a. f mu to your working direc-
tory. Note that the Furuta.fmu file is currently only supported on Windows. Measurement data for ¢ and 6
is available in the file $JMODELI CA_HOVE/ Pyt hon/ pyj mi / exanpl es/ fi | es/ Fur ut aDat a. mat . Copy this file to
your working directory as well. These measurements will be used for the calibration. Open a text file, name it
furuta_par_est. py and enter the following imports:

fromscipy.io.matl ab. m o i nport | oadmat
import natplotlib.pyplot as plt

import nunpy as N

frompyfm inport |oad_fnu
frompyjm.optimzation inmport dfo
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Then, enter code for opening the data file and extracting the measurement time series:

# Load neasurenent data fromfile

data = | oadmat (' Furut aDat a. mat ' , appendnat =Fal se)
# Extract data series

t_nmeas = data['tine'][:, 0]

phi _meas = data['phi'][:, 0]

theta_neas = data['theta'][:,0]

Now, plot the measurements;

# Pl ot neasurenents

plt.figure (1)

plt.clf()

plt.subplot(2,1,1)

plt.plot(t_neas,theta_neas, | abel =" Measurenents')
plt.title('theta [rad]"')

plt.l egend(l oc=1)

plt.grid ()

pl t.subplot (2,1, 2)

plt.plot(t_neas, phi _neas, | abel = Measurenents')
plt.title('phi [rad]"')

plt.l egend(l oc=1)

plt.grid ()

plt.show ()

This code should generate Figure 6.13 showing the measurements of 6 and ¢.

theta [rad]

— Measurements

0 i i i

0 5 10 15 .20 30 35 40
phi[rad]
0.1 .

Figure 6.13 Measurements of 6 and ¢ for the Furuta pendulum.

To investigate the accuracy of the nominal parameter values in the model, we shall now simulate the model:
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# Load nodel

model = | oad_frmu("Furuta.fm")

# Sinul ate nodel response with nom nal paraneters
res = nodel .simulate(start_tinme=0.,final_tinme=40)
# Load simulation result

phi _sim = res['armloi nt. phi']

theta_sim= res[' pendul umJoi nt. phi ']
t_sim=res['tine']

Then, we plot the simulation result:

# Plot sinmulation result

plt.figure (1)

plt.subplot(2,1,1)

plt.plot(t_simtheta_sim'--',label="Sinulation nom nal paraneters')
plt.l egend(l oc=1)

pl t.subplot (2,1, 2)

plt.plot(t_simphi_sim'--"',label="Sinulation nom nal paraneters')
plt.xlabel ("t [s]")

plt. | egend(l oc=1)

pl t.show ()

Figure 6.14 shows the simulation result together with the measurements.

theta [rad]
6 T

T T T
— Measurements
5 i d N i S = -+ Simulation nominal parameters

20
phi[rad]

T T
— Measurements
=+ Simulation nominal parameters

i
0 5 10 15 20 25 30 35 40
t [s]

Figure 6.14 Measurements and model simulation result for ¢ and 6 when using nominal parameter values in the
Furuta pendulum model.

As can be seen, the simulation result does not quite agree with the measurements. We shall now attempt to calibrate
the model by estimating the two following model parameters:
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* carm: @m friction coefficient (nominal value 0.012)

* Cpend: PENdulum friction coefficient (nominal value 0.002)

The calibration will be performed using the Nelder-Mead simplex optimization a gorithm. The objective function,
i.e. the function to be minimized, is defined as:

M M

fo=Y (rp""’”(r,.. X) — @M, ))2 + ) (9‘""'(r,, x) — @meas(y, ))2

i=1 i=1

meas

T
wheret;, i =1,2,...,M, are the measurement time points and [Carm Cpend] isthe parameter vector. ™ and 0

are the measurements of ¢ and 6, respectively, and @sim and 6°'™ are the corresponding simulation results. Now,
add code defining a starting point for the algorithm (use the nominal parameter values) aswell as lower and upper
bounds for the parameters:

# Choose starting point

x0 = N array([0.012,0.002])*1e3

# Choose | ower and upper bounds (optional)
Ib = N zeros (2)

ub = (x0 + le-2)*1e3

Notethat thevaluesare scaled with afactor 10°. Thisisdoneto get amore appropriatevariablesizefor thealgorithm
to work with. After the optimization is done, the obtained result is scaled back again. In this calibration problem,
we shall use multiprocessing, i.e., parallel execution of multiple processes. All objective function evaluationsin
the optimization algorithm will be performed in separate processes in order to save memory and time. To be able
to do this we need to define the objective function in a separate Python file and provide the optimization algorithm
with the file name. Open a new text file, nameit f ur ut a_cost . py and enter the following imports:

frompyfm inport |oad_fnmnu
frompyjm.optimzation inmport dfo
from scipy.io.matl ab. m o inport | oadmat
import nunpy as N

Then, enter code for opening the data file and extracting the measurement time series:

# Load neasurenent data fromfile

data = | oadnmat (' Furut aDat a. mat ' , appendnat =Fal se)
# Extract data series

t_meas = data['tinme'][:, 0]

phi _meas = data['phi'][:, 0]

theta _neas = data['theta'][:, 0]

Next, define the objective function, it is important that the objective function has the same name as the file it is
defined in (except for . py):

# Define the objective function
def furuta_ cost(x):
# Scal e down the inputs x since they are scal ed up
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# versions of the paranmeters (x = 1e3*[ parantl, paran?])
arnfrictionCoefficient = x[0]/1e3

pendul unfricti onCoefficient = x[1]/1e3

# Load nodel

nodel = load_fmu('../Furuta.fm')

# Set new paraneter values into the nodel

nodel . set (" arnfriction', arnfricti onCoefficient)

nodel . set (' pendul unfriction', pendul unfri cti onCoeffi ci ent)
# Sinul ate nodel response with new paraneter val ues
res = nodel .sinulate(start_tinme=0.,final _tinme=40)

# Load simul ation result

phi _sim = res[' armloi nt. phi']

theta_sim= res[' pendul umlJoi nt. phi']
t_sim=res['tine']

# Eval uate the objective function

y_nmeas = N.vstack((phi _neas ,theta_neas))

y_sim= N. vstack((phi _simtheta_sim)

obj = dfo.quad_err(t_neas,y_neas,t_simy_sim

return obj

This function will later be evaluated in temporary sub-directories to your working directory which is why the
string ' .. /' is added to the FMU name, it means that the FMU is located in the parent directory. The Python
function df 0. quad_er r evaluates the objective function. Now we can finally perform the actual calibration. Solve
the optimization problem by calling the Python function df o. f mi n in the file named f ur ut a_par _est . py:

# Sol ve the probl em using the Nel der-Mead sinplex al gorithm
x_opt,f_opt,nbr_iters,nbr_fevals,solve tine = dfo.fm n("furuta_cost. py",
xstart=x0, | b=l b, ub=ub, al g=1, nbr _cor es=4, x_t ol =1le- 3, f _t ol =le-2)

The input argument al g specifies which algorithm to be used, al g=1 means that the Nelder-Mead simplex algo-
rithm is used. The number of processor cores (nbr _cor es) on the computer used must also be provided when
multiprocessing is applied. Now print the optimal parameter values and the optimal function value:

# Optimal point (don't forget to scal e down)

[arnfrictionCoefficient_opt, pendul unfrictionCoefficient_opt] = x_opt/1le3
# Print optinmal paraneter val ues and optimal function val ue

print(' Optimal paraneter val ues:')

print(‘armfriction coeff ="' + str(arnfricti onCoefficient_opt))
print(' pendul umfriction coeff ="' + str(pendul unfrictionCoefficient_opt))
print('Optinmal function value: ' + str(f_opt))

This should give something like the following printout:

Opti mal paraneter val ues:

armfriction coeff = 0.00997223923413
pendul um friction coeff = 0.000994473020199
Opti mal function value: 1.09943830585

Then, we set the optimized parameter values into the model and simulate it:

# Load nodel
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model = | oad_frnu("Furuta.fnm")

# Set optimal paraneter values into the nodel

nodel . set ("arnfFriction',arnfFricti onCoefficient_opt)

nmodel . set (' pendul unfriction', pendul unfricti onCoef ficient_opt)
# Sinmul ate nodel response with opti mal paraneter val ues

res = nodel .sinmulate(start_tinme=0.,final_tinme=40)

# Load sinmulation result

phi _opt = res['armloint. phi']

theta_opt = res[' pendul umJoi nt. phi']

t_opt =res['tine']

Finally, we plot the simulation result:

# Plot simulation result

plt.figure(l)

plt.subplot(2,1,1)
plt.plot(t_opt,theta_opt,'-.",|inew dth=3,
| abel = Si mul ati on opti mal paraneters')
plt. | egend(l oc=1)

plt.subplot(2,1,2)

plt.plot(t_opt, phi_opt,'-.",linew dt h=3,
| abel =" Simul ati on optimal paraneters')
plt.l egend(l oc=1)

plt.show()

This should generate the Figure 6.15. As can be seen, the agreement between the measurements and the smulation
result has improved considerably. The model has been successfully calibrated.
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Figure 6.15 Measurements and model simulation results for ¢ and 6 with nominal and optimal parametersin the
model of the Furuta pendulum.
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Chapter 7. Modelica Compiler
Interface for MATLAB®

7.1. Introduction

The Modelica compiler interface for MATLAB® supports compilation of Modelica models to FMUs (Functional
Mock-up Units) from the MATLAB® command line or a script. Both FMUs for Model Exchange and Co-simula-
tion standalone, version 1.0 and 2.0, are supported. An FMU can be compiled using either the Modelica compiler
provided by OCT or Dymola.

7.2. Getting started

This section introduces the Modelica compiler interface for MATLAB®. The prerequisites for using the interface
were described in Section 2.2.1.1 in Chapter 2. In Section 7.2.1 some introductory examples on how to get started
follows.

7.2.1. Introductory examples

The following examples introduces how to use the M odelica compiler interface using both the Modelica compiler
provided by OCT and Dymola

7.2.1.1. Modelica compiler provided by OCT

The following example shows how to compile an FMU from the Modelica Standard Library with the Modelica
compiler provided by OCT. The code can be executed directly in the MATLAB® command prompt or entered
into ascript (m-file).

% Call the conplilation function with nodel nane and chosen conpiler as input argunents.
% The function output argunment is the absolute path to the conpiled FMJ.

nodel Name = ' Mbdel i ca. Mechani cs. Rot ati onal . Exanpl es. Coupl edCl ut ches'

f muNane = oct. nodel i ca. conpi | eFMJ( nodel Nane, ' OCT_Mbdel i ca')

7.2.1.2. Dymola

This short example shows how to compile an FMU from the Modelica Standard Library with Dymola. Note that
before Dymola can be used, the environment variable "DYMOLA_| NSTALL_DI R" must be set to point at the Dymola
installation that should be used for the compilation. After setting DYMOLA_| NSTALL_DI R, the toolbox initialization
script must be run, see more information in Section 2.2.1.4.

% Set the Dynola installation to use
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setenv(' DYMOLA I NSTALL_DIR ,' C:\Program Fi |l es (x86)\Dynol a 2014 FDO1')

oct . i ni t OCT()

% Call the conplilation function with nodel nane and chosen conpil er as input argunents.
% The function output argunent is the absolute path to the conpiled FMJ.

nodel Nane = ' Model i ca. Mechani cs. Rot at i onal . Exanpl es. Coupl edd ut ches'

fmuName = oct. nodel i ca. conpi | eFMJ( nodel Narme, ' Dynol a')

7.3. Working with the Modelica compiler interface

In Section 7.3.1 the function API is described, followed by examples showing how to use the different input
arguments, see Section 7.3.3.

7.3.1. Reference

Only one function is needed to compile FMUs from MATLAB® using the Modelica compiler interface for MAT-
LAB®. Thisfunction is called conpi | eFMJ and residesin the package oct . nodel i ca.

There are some required input arguments and additional optional input arguments to conpi | eFMJ. The optional
input arguments are entered in pairs, such as: ' ar gunent nane' , ' val ue' . The function has one output argument
which is the absol ute file path to the compiled FMU.

Table 7.1, summarizes the input and output arguments, with corresponding information about type and default
value (where applicable).

Table 7.1 oct.modelica.compileFM U input and output arguments

Argu- Type Default value Description
ment name

Required input arguments

nodel Nane string - The name of the model to be compiled.

conpi | er string - The Modelica compiler to use for the compilation. Can
be' Dynol a' or' OCT_Mvdel i ca' .

Optional input arguments

model Pat h cell array {} List of any Modelicalibraries or model filesrequired to
compile the model. Libraries are added with absolute or
relative paths to the top directory of the library.

type string " ne' FMU type. Can be' ne' (ModelExchange) or ' ¢s' (Co-
simulation standalone).

version string '1.0 FMU version. Canbe' 1.0' or'2.0'.

options cell array {} Cell array of compiler options. The options are en-

tered in pairs, where the first value specifies the option
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Argu- Type Default value Description
ment name
name and the second value the option value, e.g. {' op-
tionl', 'valuel', 'option2', 'value2'}.
| ogLevel string " war ni ng' The compiler log level. Canbe* warni ng' , ' error',

"info and' debug' . Appendthelog level flag with
acolon and afilename to writethelog to afile, e.g.

" debug: | og. t xt' . Thisargument will not have any ef-
fect when using Dymola.

output Di r string v Output directory for the FMU. Can be relative or abso-
lute. The directory must exist.

Output arguments
- ‘stri ng ‘ ‘Absolute path to the compiled FMU.

7.3.2. Configuration variables

There are a few important environment variables that can be used to configure the Modelica compiler interface
provided by OCT. The table below lists these variables with description and default value.

Table 7.2 Configuration variables

Name Default value Description
DYMOLA_| NSTALL_DI R - Path pointing at the Dymolainstallation to use for the
compilation. Must be set before compiling an FMU us-
ing Dymola
OCT_JVM_ARGS “Xmx1lg' JVM arguments for the Java process used when com-

piling with the Modelica compiler provided by OCT.
Can be used to increase memory when compiling larger
models.

OCT_JAVA_HOVE - Path to Java (JRE or JDK) that will be used when com-
piling with the M odelica compiler provided by OCT. If
not set, the Java distribution that is bundled in the OCT
installation will be used.

7.3.3. Examples
In this section, afew code examples on how to use the M odelica compiler interface for MATLAB® are shown.

All examples assume that the Modelica toolbox for MATLAB® has been installed and enabled according to the
instructions in Section 2.2.1.
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7.3.3.1. Compile an FMU using default arguments

In this example, a model will be compiled using default arguments. The code example assumes that the Dymola
installation to use has already been set using the environment variable "DYMOLA | NSTALL_DI R".

% Conpi | e a nodel using default arguments using Dynol a

% Save the path to the conpiled FMJ in a variable 'fmu'
frmu = oct. nodel i ca. conpi | eFMJX ' myPackage. myModel ', ' Dynol a')

If the moddl residesin amo-file, the function call is
% Conpi | e the nodel specifying the nodel file

% Save the path to the conpiled FMJ in a variable 'fm'
fmu = oct.nodelica. conpil eFMJ(' nyPackage. nyMddel ', 'Dynola', 'nodel Path', {'nyModels.no'})

7.3.3.2. Compile an FMU setting input arguments

In this example, amodel is compiled by specifying amodel file and setting FMU type.

% Conpi | e the nodel specifying the nodel file and setting FMJ type to 'cs'
fmu = oct.nodelica. conpil eFMJ(' myPackage. nyMdel ', ' OCT_Model i ca', 'nodel Path',
{' nyModel s. o'}, 'type', 'cs')

If many model files or libraries are required to compile a model it might be easier to save the input argument as
avariable. Thisis demonstrated in the following example:

% Save array of libraries in a variable

nyLibs = {"../lib1", "../1ib2'}

% Conpi | e the nodel specifying the nodel file and setting FMJ type to 'cs'

fmu = oct.nodelica.conpil eFMJ(' myPackage. nyModel ', ' OCT_Model i ca', 'nodel Path', myLi bs,
‘"type', 'cs')

The next example shows how to set compiler options. Options are entered as key-value pairsin acell array:

% Set a coupl e of options, entered as key-val ue pairs

opts = {'string-option', 'stringvalue', 'bool ean-option', true}
% Conpi | e the nodel specifying the nodel file and conpiler options
fmu = oct. nodel i ca. conpi | eFMJ(' nyPackage. myModel ', ' OCT_Mbdel i ca', 'nodel Path',

{' nyModel s. '}, 'options', opts)
7.3.3.3. Compile an FMU specifying log level

The following examples will show how to change the compiler log level and how to output the log to file:

% Conpi | e a nodel from MSL, changing conpiler log |level to 'debug'
nodel Nanme = ' Mbdel i ca. Mechani cs. Rot at i onal . Exanpl es. Coupl edCl ut ches'
fmu = oct. nodel i ca. conpi | eFMJ( nodel Name, ' OCT_Mbdelica', 'logLevel', 'debug')

The log level 'debug’ produces a lot of output and it is then convenient to save the output in afile. Log entries
corresponding to ‘warning' will still be printed to the command prompt.
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% Conpi l e a nodel from MSL, witing debug | og output to file
nmodel Nane = ' Model i ca. Mechani cs. Rot at i onal . Exanpl es. Coupl edC ut ches'
fmu = oct.nodelica. conpil eFMJ nodel Nane, ' OCT_Mbdelica', 'logLevel', 'debug:log.txt")
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MATLAB®

In this chapter a small example will be shown on how to compile and then simulate a Modelica model in MAT-
LAB®. The simulation relieson FMI Toolbox for MATLAB®. For further documentation please refer to the FMI
Toolbox User's Guide.

8.1. Compile an FMU and simulate in the FMI Toolbox

This example demonstrates how to compile aModelicamodel to an FMU Model Exchange 1.0 using the Modelica
compiler provided by OCT and how to simulate the FMU using FMI Toolbox for MATLAB®.

% Set required input argunents

nodel nane = ' Mbdel i ca. Mechani cs. Rot ati onal . Exanpl es. Fi rst'
conpil er = ' OCT_Model i ca'

% Conpi | e nodel with default input argunents

f mruName = oct. nodel i ca. conpi | eFMJ( npodel narme, conpil er)

% Load the FMJ using FM t ool box

frmu_ne = FMUModel MEL( f muNane)

% Specify result vari abl es

outdata.name = {'inertial.w ,'inertia2.w,'inertia3.w}

% Instantiate, initialize and sinulate for 3s

fru_ne. fm | nstanti at eMbdel ()

fru_me.fminitialize()

[tout, yout, ynane] = fmu_ne.sinulate([O0, 3], Qutput', outdata)
% Plot results

pl ot (tout, yout)

| egend( ynane)
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Chapter 9. Steady-state Solver
Interface for MATLAB® and Python

9.1. Introduction

The non-linear equation solver supports solution of non-linear equation systems with discontinuities. The solver is
based on the KINSOL solver that isa part of SUNDIALS, see[Kinsol2011]. The primary application is solution of
steady-state model equations packaged into FMUs (Functional Mockup Units), see[ FM12017]. The solver utilizes
interfaces provided by the FMI Toolbox for MATLAB®/Simulink (FMIT) and PyFMI (Python) respectively to
interact with FMUSs.

The solver isintended to be applied for non-linear equation systems on the form:
f(x,5w)=0 (9.3)
a(X,sw)... (9.2

Here x isacolumn vector of unknown length, sw are the current state of state of switches and f(x,sw) isacolumn
vector of residuals. The number of residualsis equal to the number of unknowns. The equations are solved using
an iterative equation solver starting with an initial guess for the iteration variables and accuracy is controlled both
by the solver options and nominal values for the iteration variables.

The equations may contain discontinuities that are identified with discontinuity indicator functions g(x, sw), which
are real valued functions. Discontinuities occur when an indicator function changes sign. The residual functions
are expected to be at least C*1 continuous outsi de the discontinuities represented with the indicator functions. This
implies that there are two separate continuous representations of f(x, sw) around each discontinuity. Explicit call-
back function is utilized by the solver to switch between the two continuous representations around a discontinuity.

9.2. Working with the Steady-State Solver MATLAB®
and Python Interfaces

Working with the steady-state interface involves setting up problems, e.g. by compiling Modelica models into
FMUs, and feeding these to the solver. When the solver solvesit actively reports information, which makesit easy
to quickly monitor and understand what happens. Once the solver isfinished it has created alog file with extensive
information about the solution progress, much more detailed than what was provided during the solver process.
This information can be used to understand in detail what happened, which is for example useful for debugging
non-convergence and finding enhancements. To this end the steady-state solver in MATLAB® and Python ships
with alogging functionality that interprets the generated log files and provides an information retrieval API.
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To use the steady-state interface Pr obl emand Sol ver instances must be created, where the Pr obl emisgiven asan
argument to the Sol ver constructor. A typical use casein MATLAB® will include an FMUPr obl eminstancethat is
created by supplying an FMUMbdel MEL or Coupl edFMUMbdel MEL model instance, as provided by FMIT and OCT,
as an argument to the FMUPr obl emconstructor. Corresponding in Python isto provide the FMUPr obl emconstructor
with an FMUmbdel ME2 from PyFMI. FMUPr obl emis a subclass of the Pr obl emclassthat isincluded in the package,
and it uses FMUs that follow the input and output variable conventions as generated when using the Modelica
compiler provided by OCT. It is also possible to create custom subclasses of the Pr obl emclass and provide them
to the Sol ver . Thelog information retrieval APl is provided through the LogVi ewer class.

Below a short description of the APl is given, followed by some examples: a simple use case, a complete use case
including specification of aMaodelicamodel and compilation to an FMU using the Modelica compiler provided by
OCT, an example showing how to use the information retrieval API, an example showing how to create a custom
subclass to Pr obl emand finally an example demonstrating the concept of interactive FMUs.

For Python, the examples below are equivalent to whether a 32-bit or 64-bit versionisused. For MATLAB® users
this holds only for a 64-bit version. Moreover, the bitness of the solversistied to the specific bitness of Python or
MATLAB® that isused. Note that FMUs are platform specific, and need to be compiled for the platform used.

9.2.1. Important Interface Features

Described below are some central user aspects of the Pr obl em Sol ver and LogVi ewer classes. The mechanics of
log file creation is also described. The classes are located inside the MATLAB® package oct . nl esol and Python
package oct . st eadyst at e. nl esol respectively.

For detailed documentation about classes and methods use the interactive documentation. In MATLAB® this can
be retrieved through:

e hel p CLASS_NAME For classlevel help.

* hel p CLASS NAME. METHOD NAME For detailed documentation about methods.

* doc CLASS NAME Explore documentation using MATLAB® documentation browser.

In Python this can be retrieved through:

* hel p(obj ect) can be utilized to access docstrings. For example by typing in a Python-shell: hel p( Sol ver) .
* obj ect ?, €. Sol ver ?, can also be utilized to access docstrings if using |Python or PyL ab.

Note that the solver uses Math Kernel Library (MKL) and that it can dightly affect the results of a solve. For
further information, see Section C.5.

9.2.1.1. Problem and FMUProblem

The Probl emclass in itself can not be used with the solver as it provides no way to populate it with problem
information. The intended use is via subclasses, either through a custom implementation or by using the provided

106



Steady-state Solver Interface
for MATLAB® and Python

class FMUPr obl em which uses interactive FMUs. An interactive FMU is designed to expose the system to an
external solver, and this is achieved by transforming the iteration variables to inputs and the residual variables to
outputs on the FMU, see examplein Section 9.2.2.1 below for further details.

FMUPr obl emtakes an FMU as an argument to the constructor, and it may also take names of iteration and resid-
ual variables. FMJPr obl em provides functionality to hold iteration variables and residuals, see examples in the
section called “Hold Iteration Variables (Python)” and the section called “Hold Iteration Variables (MATLAB)”.
FMUPr obl em also provides functionality for parametric holding, see examples in the section called “Parametric
Hold Iteration Variables (Python)” and the section called “ Parametric Hold Iteration Variables (MATLAB)” and
see Section 14.1 for a specification over how parametric holding is specified in models.

FMUPr obl em supports handling of initial guess based on iteration variable start attribute that is symmetric to the
handling donein FMUswith integrated solver. Specificaly, if start attribute is defined via a parametric expression
the expression is evaluated and used during FM U initialization. See examplein the section called “ Parametric Start
Attributes (MATLAB)” for more details.

A convenient way to view information about the FMUPr obl emis through the printinfo and print_info methods for
MATLAB® and Python respectively.

9.2.1.2. Solver

Sol ver takesaPr obl eminstance as an argument to the constructor. Thisinstance represents the steady-state prob-
lem to be solved. The most important methods are the solve method, which invokes the solver, and the setOptions
method in MATLAB® and the corresponding functionality with solve_options() and the options argument to the
solve method in Python. Possible options to the solver are given in the table below.

Table 9.1 Solver Options
Option Default Description

active_bounds_mode 0 0 - project Newton step, 1 - use steepest descent in case of
non-descent direction. (Corresponding compiler option:
nle_active_bounds_mode)

check jac cond true Calculate jacobian condition number and write it
out to the log. (Corresponding compiler option:
nle_solver_check _jac cond)

Brent_ignore_error false Ignore Brent solve error for debugging purposes. (Corre-
sponding compiler option: nle_brent_ignore_error)
discontinuities_tolerance (MAT- 1e-10 Tolerance used to decide if discontinuity was crossed
LAB only) [eps(1), 0.1] (Corresponding compiler option: None).
enforce_bounds true Enforce bounds on iteration variables flag (true/false)

(Corresponding compiler option: enforce_bounds)
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iteration_variable_scaling

2

Iteration variable scaling mode:0 - no scaling, 1 - heuristic
scaling, 2 - nominal based scaling. (Corresponding com-
piler option: iteration_variable scaling)

jacobian_calculation_mode

Mode for how to calculate the Jacobian: O - onesided dif-
ferences, 1 - central differences, 2 - central differences at
bound, 3 - central differences at bound and 0, 4 - central
differencesin second Newton solve, 5- central differences
at bound in second Newton solve, 6 - central differences
at bound and 0 in second Newton solve, 7 - central differ-
ences when small residual, 8 - cal culate Jacobian through
MATLAB®, 9 - Jacobian compression. (Corresponding
compiler option: nle_jacobian_calculation_mode)

jacobian_check

fase

Compare the Jacobian calculated through MATLAB®
with thefinite differences Jacobian. (Corresponding com-
piler option: None)

jacobian_check_tolerance

1le-6

Maximal alowed relative error between the Jacobians
compared through option 'check_jacobian' [eps(1), 1]
(Corresponding compiler option: None)

jacobian_finite_difference delta

sqrt(eps)

Delta to use when caculating finite difference Ja-
cobians [eps(1), 0.1] (Corresponding compiler option:
nle jacobian finite difference delta)

jacobian_update_mode

Mode for how to update the Jacobian: O - full Jacobian,
1 - Broyden update, 2 - reuse Jacobian (Corresponding
compiler option: nle_jacobian_update_mode)

log_level

Log level for the solver [0, 8] (Corresponding compiler
option: log_level)

max_iter

100

Maximum number of iterations in the non-linear
solver [1, 1000] (Corresponding compiler option:
nle_solver_max_iter)

max_iter_no_jacobian

10

Maximum number of iterations without jacobian up-
date. Vaue 1 means an update in every iter-
ation. [1, 1000] (Corresponding compiler option:
nle_solver_max_iter_no_jacobian)

max_residual_scaling_factor

1lel0

Maximum alowed scaling factor for residu-
as [1, 1e32] (Corresponding compiler option:
nle_solver_max_residual_scaling_factor)
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min_residual_scaling_factor le-10 Minimal allowed scaing factor for  residu-
as [le-32, 1] (Corresponding compiler option:
nle_solver_min_residual_scaling_factor)

regularization_tolerance 1le-10 Tolerance for deciding when jacobian regularization
should kick in (i.e. when condition number islarger than
Uregularization_tolerance [eps(1), 0.1] (Corresponding
compiler option: nle_solver_regularization_tolerance)

rescale after_singular_jac true Update scaling factors after passing a sin-
gular point. (Corresponding compiler  option:
rescale after_singular_jac)

rescale_each solve false Update scaling factors at the beginning of each solve()
call. (Corresponding compiler option: rescale_each_step)

residual_equation_scaling 1 Residual equation scaling mode: O - no scaling, 1 - au-
tomatic scaling, 2 - manual scaling, 3 - hybrid scaling,
4 - aggressive automatic scaling, 5 - automatic rescaling
at full Jacobian update. (Corresponding compiler option:
residual_equation_scaling)

solver_exit_criterion 3 Exit criterion mode for the solver: Valid values: O - step
length and residual based, 1 - only step length based, 2 -
only residual based, 3 - hybrid. (Corresponding compiler
option: nle_solver_exit_criterion)

tolerance le-6 Relativetolerance[eps(1), 0.1]. (Corresponding compiler
option: nle_solver_default_tol)

silent_mode false No solve information written to the screen, but still to log
(trueffalse) (Corresponding compiler option: None).

step_limit_factor 0.2 Factor used to limit the step size based on nominal and

min/max range [0.01, 100]. Newton step length islimited
so that for any iteration variable xi it is not larger than
step_linit_factor times m n(max(abs(noninal),
abs(xi)), (xi _max-xi _mn)). (Corresponding compil-
er option: nle_solver_step_limit_factor)

use Brent_in_1d false Use Brent as a backup method for solving 1D equations.
(Corresponding compiler option: use Brent_in_1d)

use_jacobian_equilibration false Use Jacobian equilibration to improve linear solver
accuracy (true/false). (Corresponding compiler option:
use_jacobian_equilibration)

As the solver progresses it will print out status messages to the MATLAB® terminal/Python console. These are
provided to give a quick overview of the process.
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9.2.1.3. LogViewer

LogVi ewer works with log files, both from logs generated by the Sol ver and logs generated by FMIT and PyF-
MI, during e.g. initialization. In the case of logs generated by the Sol ver they are stored as XML files. Log files
generated by FMIT and PyFMI are stored as .txt files that contain XML data. The log files contain alot of infor-
mation, and the amount of information saved in them can be regulated by setting the log level on the Sol ver and
on the FMUSs, see section Section 9.2.1.4 for further details. LogVi ewer provides an API for retrieving informa-
tions from the log. Example of methods it provides arein the MATLAB® case: getlterationVariables, getResidu-
als, getJacobian, getErrors, getStep and getWarnings. Corresponding Python methods are: get_iteration_variables,
get_residuals, get_jacobian, get_errors, get_step and get_warnings.

A LogVi ewer can be created either by providing a Sol ver object or the name of alog-file as an argument to the
constructor.

9.2.1.4. How to Control Information Saved in Log Files

The OCT steady-state packages contain apowerful logging framework. The framework is particularly useful when
applied to FMUs compiled with OCT Modelica compiler. This section will explain how to determine what data
should be logged. It may be necessary to determine what data is logged for large models, since logging can use
alot of resources.

When using oct.nlesol with FMIT in MATLAB® there are three ways to change what 1og data will be saved:

* Set an option on the oct.nlesol.Solver object.

» Give an argument to the constructor of the FMIT FMU aobject.

* Set aparameter on the FMU.

When using oct.steadystate.nlesol in Python together with PyFMI there are three ways to change what log data
will be saved:

» Provide an option on the oct.steadystate.nlesol .Solver object.
* Givetheargument| og_| evel to PyFMI'S| oad_f nu
* Set aparameter on the FMU.

These values will change different aspects of what is logged, and they may also affect each other. Below an
overview of these ways and their connectionsis presented. Note that the logging framework can also be used with
logs produced by FMUs with an integrated solver, in that case the log level can only be changed directly on the
FMU as no Solver object is used.
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Events that trigger logging mostly include the solution of equations blocks, but also other information such as
ModelicaM essage/M odelicaError in external C-libs, |O messages about external files such as XML files used by
the FMU and asserts in Modelica code. There are two places where equation blocks may be solved:

In the segregated MATLAB®/Python solver.

In code that is built into the FMU.

In the case of FMUs with an integrated solver, blocks are only solved inside the FMU. For FMUs used together
with the segregated MATLAB®/Python solver, blocks are typically solved only in the segregated solver. When
solving FMUswith local iterations, the blocksfor local iterations are solved inside the FMU even if the segregated
solver is used. The blocks for local iterations are typically solved using a Brent solver.

In MATLAB® thelog level can be set by:

Sol ver. set Options(' 1 og_l evel ') : For the segregated solver this is the main log level and will determine
what data is emitted about the block solved by the segregated solver. This will not affect what datais emitted
by the FMU.

Asaparameter on the FMU: f nu. set Val ue(* _l og_I evel *, nnn), where nnnisan integer. Thelog level can
only be changed before acall to fmilnitialize. Sincefmilnitalizeis called on the FMU as part of the FMUProblem
constructor it can only be set before the FMUProblem is created. The default log level for an FMU is set with
acompiler option ‘log_level’.

In the constructor to an FMIT FMU object, eg. fmu = FMUModel MEL(f nuNane, *‘1og_l evel ') . Where
log level is: 'dl', 'verbose, 'infa', '‘warning', ‘error', 'fatal’, 'nothing'. See FMIT docs for further details.

In Python the log level can be set by:

Changing the solver option log_level by first retrieving a Sol ver Opt i ons aobject through

opts = sol ver. sol ve_options()

Then thelog level is set through:

opts['log_level'] = val

and opt s ispassedtothesol ve( opt i ons=opt s) method. Itisalso possibleto set thelog level without retrieving
asSol ver Opt i ons object using sol ve(options = {'log_l evel': val}) whereval isasuitableinteger.

This affects what data is emitted about the block solved by the segregated solver and does not affect what data
is emitted by the FMU.
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* Asaparameter onthe FMU: f nu. set (" _l og_l evel ", nnn),wherennnisaninteger. Thelog level can only be
changed before acall to initialize. Sinceinitializeis called on the FMU as part of the FMUProblem constructor
it can only be set before the FMUProblem is created. The default log level for an FMU is set with a compiler
option ‘log_level’.

* Invoking the command | oad_f mu(f mu_name, |og_| evel =XX) and setting XX to any integer in the range zero
to seven.

With PyFMI it is also possible to set the log level of amodel that has already been loaded, thisis done by using
theset _| og_l evel (param) method. E.g. nodel . set _| og_| evel (7).

As mentioned above, the log level set on the solver object does not affect the log information emitted by the FMU.
However, in MATLAB® the log level set as an argument to the constructor of the FMIT FMU object affects
what happens when the log level is set as a parameter on the FMU. The constructor log level determines what
information can be logged by the FMU. For example, if it is set to ‘warning’ then only log messages that are
considered warnings or more severe can be logged by the FMU. Thus setting avery high log level as a parameter
on the FMU would not give alog with much information if FMIT log level is not set at the same time. Examples:

fru = | oadFMJ( f nuNane, ‘error’).

fru. setVal ue(' _log_level', 8) % No effect of high log | evel since only errors are passed
through by FM T

fru. setVal ue(' _log_level', 0) % No information emtted by the FMJ

frmu = | oadFMJ( f nuNane, 'all')
frmu. setVal ue(' _log_level', 8) %Al possible information enmitted by the FMJ
fru. setVal ue(' _log_level', 0) % No information emtted by the FMJ

In PyFMI, the log_level that is set either as an argument to the load_fmu method or through fmu.set_log_level()
determines what information will be passed through. That means, like in the MATLAB® case above that:

fru = load_f mu(frmu_name, |og_| evel =2)
fru.set (' _log_level', 8) # No effect of high log | evel since only errors are passed through
by PyFM

fru.set(' _log_level', O0) # No information enmtted by the FMJ

frmu = | oad_f mu(f muName, |og_| evel =7)
fru.set (' _log_level', 8 %A | possible information emtted by the FMJ
fru.set (' _log_level', 0) % No information emitted by the FMJ

To get information about the blocks solved in the FMU the log level set in the constructor must be ‘info’/4 or
above. Messages that are considered ‘info’/4 include all types of information emitted in the solution of blocks. So
if an FMU object is created with log level ‘info’/4 then the log level set as a parameter on the FMU determine
exactly what messages on the level of info that are emitted. For example, to get full information from the blocks
solved by Brent requireslog level 8. But if blocks are solved using a Newton solver only log level 6 is needed.

9.2.1.5. What Log Files are Created

There are two different log files written for aModel A.fmu compiled from ModelA in Modelica:

112



Steady-state Solver Interface
for MATLAB® and Python

* ModelA_log.txt — produced by FMIT/PyFMI. The detail level is controlled by setting the log level on the FMU
in one of the two ways described above. The log can be used by LogViewer that retrieves and parses the XML
information in the file. Thisis used when the system is solved with an integrated solver.

e ModelA_log.xml (MATLAB)/ModelA_solver_log.xml (Python) — produced by LogMonitor in MAT-
LAB®/Python segregated solver. Detail level iscontrolled by log_level option of the solver, and by thelog level
set on the FMU as detailed above. The log can be used by LogViewer, which parses the XML information in
thefile.

9.2.1.6. Control Log Information with Log Level

A summary of the OCT log levels and what information they are associated with is given below:
e 0: Log nothing

» 1: Errors

e 2: Warnings

» 3: Baselineinformation

* 4: Detailed information including basic Newton solver traces

 5: Detailed information including Newton solver traces

 6: Detailed information including Jacobians

 7: Detailed information including basic information on Brent

« 8: Detailed information including Brent traces

9.2.2. Examples

I nthis section we show examplessimilar for both Python and MATLAB®, starting with Python and continuing with
MATLAB®. These examples cover basic functionality such as solving the problem, creating custom problems,
working with the LogViewer, and parametric holding. The aim of this section is to familiarize the user with the
procedure of using FMUs for steady-state solving and accessing the results by means of basic examples.

First we will, however, go through some concepts which are shared between Python and MATLAB®; how to
create an interactive FMU and how to interpret the solver trace.

9.2.2.1. Interactive FMU

This example shows how the compiler creates an FMU from a steady-state Modelica model. The model:

nodel twoEqSt eadySt at e
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Real x (start
Real T (start
equati on
0 = 120*x - 75*(0.12*exp(12581*(T - 298)/(298*T)))*(1 - X);
0 = -x*(873 - T) + 11.0*(T - 300);
end t woEQSt eady St at e;

1);
400) ;

Compiling this model with the interactive fmu option set to t r ue will produce the following flattened model:

fcl ass twoEqSt eadySt at e

i nput Real x(start = 1);

input Real T(start = 400);

paraneter Real iter_0 "T";

out put Real res_O(nominal =0) "0 = (- x) * (873 - T) + 11.0 * (T - 300)";

paraneter Real iter_1 "x";

output Real res_1(nominal =0) "0 = 120 * x - 75 * (0.12 * exp(12581 * (T - 298) / (298 *

™)) *(L- )"
par anet er equation

iter_0 = 400;

iter_ 1 = 1;

equati on

res_1 =75 * (0.12 * exp(12581 * (T - 298) / (298 * T))) * (1 - x) - 120 * x;
res 0 =- (- x) * (83 - T) - 11.0 * (T - 300);

end twoEQqSt eadySt at e;
Where we see that the iteration variables are now inputs and there are residual variables as outputs.
9.2.2.2. Interpreting the Solver Trace

A typical solver trace generated (in this case from the MATLAB® example in the section called “ Complete Ex-
ample (MATLAB)") by the steady-state solver looks like:

Model nanme.........................: Exanpl eModel s. Si npl eSt eadySt at e

Nunmber of iteration variables......: 1

Nurmber of discontinuity switches...: 2

Switch iteration 1

iter res_norm max_res: ind nlb nab | ambda_max: ind | anbda
1Js 1.0000e+00 1.0000e+00: 1 0 0 2.0000e-01: 1r 2.0000e-01
2 8. 0000e-01 8. 0000e-01: 1 0 0 2.0000e-01: 1r 2.0000e-01
3 6. 4000e-01 6.4000e-01: 1 0 0 2.0000e-01: 1r 2.0000e-01
4 5.1200e-01 5.1200e-01: 1 0 0 2.0000e-01: 1r 2.0000e-01
5 4.0960e-01 4.0960e-01: 1 0 0 2.4414e-01: 1r 2.4414e-01
6 3.0960e-01 3. 0960e-01: 1 0 0 3.2300e-01: 1r 3.2300e-01
7 2.0960e-01 2.0960e-01: 1 0 0 4.7710e-01: 1r 4.7710e-01
8 1.0960e-01 1.0960e-01: 1 0 0 9.1241e-01: 1r 9.1241e-01
9 9. 6000e- 03 9. 6000e- 03: 1 0 0 1. 0000e+00 1. 0000e+00
10 0. 0000e+00 0. 0000e+00: 1

iter res_norm max_res: ind nlb nab | ambda_max: ind | anbda
1s 0. 0000e+00 0. 0000e+00: 1

Switch iteration 2
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iter res_norm max_res: ind nlb nab | ambda_max: ind | anmbda
1 6.6667e-01 6.6667e-01: 1 0 0 3.0000e-01: 1r 3. 0000e-01
2 6. 0000e-01 6.0000e- 01: 1 0 0  3.3333e-01: 1r 3.3333e-01
3 5.3333e-01 5.3333e-01: 1 0 0 3.7500e-01: 1r 3. 7500e-01
4 4.6667e-01 4.6667e-01: 1 0 0 4.2857e-01: 1r 4.2857e-01
5 4.0000e-01 4.0000e-01: 1 0 0 5.0000e-01: 1r 5. 0000e-01
6 3.3333e-01 3.3333e-01: 1 0 0 6.0000e-01: 1r 6. 0000e-01
7 2.6667e-01 2.6667e-01: 1 0 0 9.0000e-01: 1r 9. 0000e-01
8 1.8667e-01 1.8667e-01: 1 0 0 1.0000e+00 1. 0000e+00
9 1.2444e-01 1.2444e-01: 1 0 0 1.0000e+00 1. 0000e+00
10J 8.2963e-02 8.2963e-02: 1 0 0 1.0000e+00 1. 0000e+00
11 2.8553e-10 -2.8553e-10: 1 0 0 1.0000e+00 1. 0000e+00
12 0. 0000e+00 0. 0000e+00: 1

Switch iteration 3

iter res_norm max_res: ind nlb nab | ambda_nax: ind | anbda
1 6. 6667e-01 -6.6667e-01: 1 0 0 2.0000e-01: 1r 2.0000e-01
2 2.6667e-01 -2.6667e-01: 1 0 0 4.0000e-01: 1r 4.0000e-01
3 5.3333e-02 5.3333e-02: 1 0 0 1.0000e+00 6. 0000e- 01
4 4.2667e-02 -4.2667e-02: 1 0 0 1.0000e+00 6. 0000e- 01
5 3.4133e-02 3.4133e-02: 1 0 0 1.0000e+00 6. 0000e- 01
6 2.7307e-02 -2.7307e-02: 1 0 0 1.0000e+00 6. 0000e- 01
7 2.1845e-02 2.1845e-02: 1 0 0 1.0000e+00 6. 0000e- 01
8 1.7476e-02 -1.7476e-02: 1 0 0 1.0000e+00 6. 0000e- 01
9 1.3981e-02 1.398le-02: 1 0 0 1.0000e+00 6. 0000e- 01
10J 1.1185e-02 -1.1185e-02: 1 0 0 1.0000e+00 1. 0000e+00
11J 7.5318e-11 7.5318e-11: 1 0 0 1.0000e+00 1. 0000e+00
12 7.4015e-17 7.4015e-17: 1

Nunber of function eval uations: 60
Nurmber of jacobian evaluations: 5
Sol ver finished

Total tine in solver: 0.35 s

The solver outputs brief progress messages to allow to follow the solution progressin real time. Solution is per-
formed using a sequence of Newton iterations; each produces aline of statusvalues. Newton iterations are grouped
into runs that start from iteration number i t er =1 (which the gives status before the first iteration). Each run of
Newton iterations belongs to a switch iteration, printed as a header.

i ter givesthe number of the current Newton iteration in the current run. It can be followed by one or more | etters:
* J: The Jacobian was updated at the beginning of the iteration.

» s: Theresidual scaling was updated at the beginning of the iteration.

* r: Regularization is used during the iteration due to a singular Jacobian.

 x: Iteration was retried due to line search failure and Jacobian not up-to-date.

* m A minimum norm approach was used to calculate the step.

* d: Steepest descent direction used.
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res_nor mis the 2-norm of the current residua according to the current residual scaling. max_r es is the value of
the scaled residual that currently has the greatest magnitude, and the corresponding i nd isitsindex.

Atthestart of each Newton iteration, the solver computesaNewton step based on the current residual sand Jacobian.
The search direction is updated to move along active variable bounds and the step length is limited based on the
two criteria

* Limiting bounds: full step violates min/max bounds on some iteration variables.

» Range limit: full step length in avariable is too long as compared to the variable specific range limit based on
nominal value and max-min range (seestep_l i ni t _fact or solver option).

nl b column gives the current number of limiting boundsincluding active ones, and nab givesthe number of active
bounds. Line search is performed with the (projected) Newton step as search direction; the actual step taken is
| anbda times the (projected) Newton step.

The | anbda_max value gives the upper bound on | anbda from the step limiting criteria. The index of the most
limiting variable in the block is given by the corresponding i nd, if there is one. The r suffix indicates that the
range limit condition reduced the step the most. The step length may be further reduced as a part of line-search if
| anbda_nax does not give sufficient residual decrease.

The step lengths and number of limiting/active bounds reported on an iteration are for the step that is taken at the
iteration. Thisiswhy they are not printed at the last iteration.

9.2.2.3. Python Examples
Introductory Example (Python)

The simple introductory example below shows how an FMUPr obl eminstance is created, where PyFMI is used to
load an FMU model. A solver instance is created from the FMUPr obl eminstance, and the steady-state solver is
invoked.

frompyfm inmport |oad_fnmnu

from oct. st eadystate. nl esol inport FMJProblem Solver
f mu_nodel = | oad_fnu(' St eadySt at ePr obl em fmu')

f mu_pr obl em = FMJPr obl en{ f nu_nodel )

sol ver = Sol ver (f mu_probl em

sol = sol ver. sol ve()

Complete Example (Python)

Thismodel isincluded in ExampleM odel s.mo-package, and to run this exampl e begin by importing the example by

from oct. st eadyst at e. exanpl es i nport sinpl e_steadystate
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and then run

si npl e_st eadyst at e. run_deno()

First, create a steady-state Modelica model and save it to afile SimpleSteady State.mo.

nodel Si npl eSt eadySt at e
parameter Real a = 2;
input Real Db(start = 2);
Real x (start = -2);
equati on
b=if (x <-1.0)

then x + (x + 1)*a
el se
if (x > 1)
then x + (x - 1)*a
el se
X5
end Si npl eSt eadySt at e;

Next we compile the FM U with the required interactive argument and imports.

i mport os
i mport nunpy as np
from pynodel i ca i nport conpile_fnu
frompyfm inmport |oad_fnmu
from oct. st eadystate. nl esol inmport FMJProbl em Sol ver
conpiler_opts = {"interactive_fmu": True,
"expose_scal ar _equati on_bl ocks_in_interactive_fmu": True}
name = conpil e_fnu("Si npl eSt eadySt at ",
"Si npl eSt eady St at e. 0",
conpi | er _opti ons=conpi | er _opts)

Next we use PyFMI to load the FMU and pass the FMUModel M E2 instance to FM UProblem.

nmodel = | oad_fmu(nane, |og_I|evel =4)
probl em = FMJPr obl en{ nodel )

Notethat it isalso possibleto supply the names of iteration and residual variableswhen the FMUProblemiscreated,
for the model above the following would have worked as well:

probl em = FMJProbl en(nodel , iterati on_variabl es=["x"], residual _variables=["res_0"])

This feature is useful when not all iteration and residual variablesin an interactive FMU are used.
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Next we create a Solver instance and invoke the steady-state solver.

sol ver = Sol ver (probl em
res = sol ver. sol ve()

When calling for the sol ve() command, it produces the following output (described in more detail in Sec-
tion 9.2.2.2).

Model name............................... Exanpl eMddel s. Si npl eSt eadySt at e
Number of iteration variables...........: 1
Nunber of discontinuity switches........: 2

Event iteration 1
iter res_norm max_res: ind nlb nab | anbda_nax: ind | ambda

0Js 1.0000e+000 1.0000e+000: 0 0 0 2.0000e-001: Or 2.0000e-001
1 8. 0000e- 001 8. 0000e-001: 0 0 0 2.0000e-001: Or 2.0000e- 001
2 6. 4000e- 001 6.4000e-001: 0 0 0 2.0000e-001: Or 2.0000e-001
3 5.1200e- 001 5. 1200e-001: 0 0 0 2.0000e-001: Or 2.0000e- 001
4 4.0960e-001 4.0960e-001: 0 0 0 2.4414e-001: Or 2.4414e-001
5 3.0960e-001 3.0960e-001: 0 0 0 3.2300e-001: Or 3.2300e-001
6 2.0960e-001 2.0960e-001: 0 0 0 4.7710e-001: Or 4.7710e-001
7 1.0960e-001 1.0960e-001: 0 0 0 9.1241e-001: Or 9.1241e-001
8 9. 6000e- 003 9. 6000e-003: 0 0 0 1.0000e+000 1. 0000e+000
9 0. 0000e+000 0. 0000e+000: 0

iter res_norm max_res: ind nlb nab | ambda_mex: ind | anbda
0Os 0. 0000e+000 0. 0000e+000: 0

Event iteration 2

iter res_norm max_res: ind nlb nab | ambda_nax: ind | ambda
0 6. 6667e-001 6.6667e-001: 0 0 0 3.0000e-001: Or 3.0000e-001
1 6. 0000e- 001 6. 0000e-001: 0 0 0 3.3333e-001: Or 3.3333e-001
2 5. 3333e-001 5. 3333e-001: 0 0 0 3. 7500e-001: Or 3. 7500e-001
3 4.6667e-001 4.6667e-001: 0 0 0 4.2857e-001: Or 4.2857e-001
4 4.0000e-001 4.0000e-001: 0 0 0 5.0000e-001: Or 5.0000e-001
5 3.3333e-001 3.3333e-001: 0 0 0 6.0000e-001: Or 6.0000e- 001
6 2.6667e-001 2.6667e-001: 0 0 0 9.0000e-001: Or 9.0000e-001
7 1.8667e-001 1.8667e-001: 0 0 0 1.0000e+000 1. 0000e+000
8 1.2444e-001 1.2444e-001: 0 0 0 1.0000e+000 1. 0000e+000
9J 8.2963e-002 8.2963e-002: 0 0 0 1.0000e+000 1. 0000e+000
10 2.8553e- 010 -2.8553e-010: 0 0 0 1.0000e+000 1. 0000e+000
11 0. 0000e+000 0. 0000e+000: 0

Event iteration 3

iter res_norm max_res: ind nlb nab | ambda_max: ind | anbda
0 6. 6667e-001 -6.6667e-001: 0 0 0 2.0000e-001: Or 2.0000e- 001
1 2.6667e-001 -2.6667e-001: 0 0 0 4.0000e-001: Or 4.0000e-001
2 5. 3333e-002 5. 3333e-002: 0 0 0 1.0000e+000 6. 0000e- 001
3 4.2667e-002 -4.2667e-002: 0 0 0 1.0000e+000 6. 0000e- 001
4 3.4133e-002 3.4133e-002: 0 0 0 1.0000e+000 6. 0000e- 001
5 2.7307e-002 -2.7307e-002: 0 0 0 1.0000e+000 6. 0000e- 001
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6 2.1845e-002 2.1845e-002: 0 0 0 1.0000e+000 6. 0000e- 001
7 1. 7476e-002 -1. 7476e-002: 0 0 0 1.0000e+000 6. 0000e- 001
8 1.3981e-002 1.3981e-002: 0 0 0 1.0000e+000 6. 0000e- 001
9J 1.1185e-002 -1.1185e-002: 0 0 0 1.0000e+000 1. 0000e+000
10 7.7968e-011 7.7968e-011: 0 0 0 1.0000e+000 1. 0000e+000
11 7.4015e-017 7.4015e-017: 0

Nunber of function evaluations..........: 56

Number of jacobian evaluations..........: 3

Sol ver finished

Total time insolver....................: 0.22 s

Note that indexing of iteration variables and residuals starts from 0 here in Python instead of 1 as compared to
MATLAB®.

Log Information Retrieval (Python)

Below an example is presented where a steady-state problem is solved and the generated |og-file provided to the
LogVi ewer. Thismodel isincluded in the ExampleM odels.mo-package and the corresponding script to run it is
in log_viewer.py.

conpiler_opts = {"interactive_frmu": True
"expose_scal ar _equation_bl ocks_in_interactive_fm": True}
name = conpi | e_f mu(" Exanpl eModel s. t woEqSt eady St at e,
os.path.join(curr_dir, "files", "exanple_nodels.m"),
conpi | er _opti ons=conpi | er _opts)

# Use pyfm to create an fnu nodel object
nodel = | oad_fmu(nane, |og_| evel =4)
nodel . set ("_l og_l evel ", 4)

# Create the problemclass instance fromthe frmu and supply it to the
# sol ver.

pr obl em = FMJUPr obl en{ nodel )

sol ver = Sol ver (probl em

# Solve the problemwith a log | evel sufficiently high to get
# values of iteration variables emtted to the log file.
sol ver.solve({"l og_|l evel ": 6})

# Create the LogViewer fromthe solver class instance we
# created above as such
| og_vi ewer = LogVi ewer (sol ver)

# LogVi ewer can al so be supplied with the log-file, e.g.
# | og_vi ewer = LogVi ewer ("t woEqSt eadyState | og. xm ")

# 1t is now possible to play around and retrieve infornmation fromthe | og
# E.g. retrieve the values of the iteration variables at different
# times during the solver invocation
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iter_data_second_newton = | og_viewer.get_iteration_variabl es()
iv_names = |l og_viewer.get iteration_variabl e_nanmes()][0]
residuals = | og_vi ewer. get _residual s()

if with_plots:

import matplotlib.pyplot as plt

# Plot the data

f, (axl, ax2, ax3) = plt.subplots(3, sharex=True)

axl.plot(iter_data _second_newton[O][:, :])

ax1. mar gi ns(0, 0. 1)

axl.set title("IV values as a function of iterations in Newon solve invocation")

ax1. set _yl abel ("Val ues")

ax1l. | egend(i v_nanes)

ax2.sem | ogy(np. abs(iter_data second_newton[O][:, :]-iter_data_second_new on[ 0]
[-1, :1))

ax2. mar gi ns(0, 0. 1)

ax2.set _yl abel ("Di stance")

ax3. semi | ogy(np. abs(residual s[0]))

ax3. set _yl abel (" Resi dual s")

ax3.set _xl abel ("lIteration #")

plt.tight | ayout()

# For several functions one may specify which iteration variables one is interested in.
nom nal _data_second_newt on =
l og_viewer.get _iteration_variabl e _nom nal (iv_nanes=[iv_nanmes[0]])

# Retrieve the solver trace
sol ver _trace = | og_vi ewer. get_sol ver _trace()

# |f the steady-state solver was used several tines on the sane problemit will have

# filled the log file with information fromthe different solver invocations. To get

# informati on about a particular solver invocation and/or solve provide the sol ve index
# as argunent. Sol ve indices can be found through

print("Solve info:")

print(log_viewer.get_solve_info())

# E.g. to get the values of iteration variables for the second
# sol ver invocation |log present in the log the followi ng is used:
# Solve index is 2 since two Newton sol ves have been perforned in sol ver invocation O.

iter_data_second_newton = | og_viewer.get_iteration_variabl es(2)
# O to only get information for a particular variable
iter_data_second_newton = | og_viewer.get _iteration_variables(2, iv_nanes=[iv_nanmes[0]])

# Other functions provided by LogVi ewer

res_var _data_second_newton = | og_vi ewer. get _residual s()
res_dat a_second_newt on = | og_vi ewer. get _scal ed_resi dual _nor m()
jac_dat a_second_newton = | og_vi ewer. get _jacobi ans()

iter_num second_newton = | og_vi ewer. get_nunber_of _iterations()

# For sone of LogViewer's functions it is possible to specify a sol ve i ndex
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# together with an iteration nunber to retrieve data only fromthere.
# Note fromthe get_solve_info() output that solve index represents a Newton

# sol ve
new on_step = | og_vi ewer.get_step("Newton", 1, 0, scal ed_step=Fal se)
| anbda_nmax = | og_vi ewer.get_step_ratio("l anbda_nax", 1, 0)

The following plot was generated in the example:

I\ values as a function of iterations in Newton solve invocation
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Figure 9.1 Using LogViewer to extract datafrom alog file in Python.

Creating Custom Problem Class (Python)

It is also possible to implement custom subclasses by utilizing inheritance of the Pr obl emclass. Below we show
acomplete class.
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# Sol vi ng

# FX = if(x < -1)

# X + (x+1)*COEFF

# el se

# if(x > 1)

# X + (x - 1)*COEFF;
# el se

# X;

i mport nunpy as np
from oct. st eadyst at e. nl esol . probl em i nport Probl em

cl ass Test Probl en( Probl en) :

def __init__(self):

Problem __init__(self)

self.FX = 2

sel f. COEFF = 2

self. _n_iteration_variables = 1

sel f._n_discontinuity_indicators = 2

self. x_ initial = np.array([2])
self. x = self. x_initial

sel f.sw0 = Fal se

sel f.swl = Fal se

def get _nunber_of _iteration_variabl es(sel f):
return self. _n_iteration_variables

def get_nunber_of _di scontinuity_indicators(self):
return self. _n_discontinuity_indicators

def get _initial_guess(self):
return np.array([self._x_initial])

def get_iteration_variabl es(self):
return np.array([self. x_initial])

def eval uate_di scontinuity_indicators(self, ivs = None):
if ivs is None

ivs = self._x

return np.array([-ivs[0] - 1, ivs[O] - 1])

def make_di sconti nuous_change(sel f):
self.sw0 = np.all (np.less(self._x, -1))
self.swl = np.all(np.greater(self._x, 1))

def set_iteration_variables(self, x):
self. x = x

def eval uate_residual s(self, x):
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if self.swo:

val = x + (x + 1)*sel f._COEFF
elif self.swl:

val = x + (x - 1)*sel f._CCEFF

el se:
val = x
return_val = self.FX - val

sel f.set _iteration_variabl es(x)
return return_val

This class can then be sent to the solver in much the same manner as above:

from oct. st eadyst ate. nl esol inport Solver
probl em = Test Probl en()
sol ver = Sol ver(cls. probl em

Hold Iteration Variables (Python)

In this example we show the functionality of holding iteration variables for FMUPr obl em It uses the model from
Section 9.2.2.1, which is included in the ExampleM odels.mo-package. The Python script to run this example is
hold_1Vs.py.

# The FMJProblemin this exanple contains two iteration variables. Using
# printinfo its structure i s shown:

probl em print _i nfo()

s lteration variables ::::iii:
1: 4.0000000000000000E+02 T
2: 1.0000000000000000E+00 x

ciiii::: Residual equations ::::::::
0: -6.2700000000000000E+02 0
1. -1.2000000000000000E+02 0

*M)) *(1-Xx

(- x) * (873 - T) + 11.0 * (T - 300)
120 * x - 75 * (0.12 * exp(12581 * (T - 298) / (298

# To hold an iteration variable the nethod "hold_iteration_variables" is
# provided. Let's hold variable T

probl em hol d_iterati on_vari abl es([0])

print(' problemhold_iteration_variables([0])")

# We could also use {'T'} as an argunent

# Using printlnfo again we see that T, and the correspondi ng resi dual
# equation is renoved.
probl em print _i nfo()

probl em hol d_iteration_vari abl es([0])
iiiiii:: lteration variables :::::i:::
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1: 1.0000000000000000E+00 X
:ii::::: Residual equations ::::::::

1: -1.2000000000000000E+02 0 =120 * x - 75 * (0.12 * exp(12581 * (T - 298) / (298
*M)) *(1-x)

# To restore the systemwe can use the nmethod "rel easelterationVariabl es"
probl emrel ease_iteration_variabl es([0])

print('\nproblemrel ease_iteration_variables([0])"')

probl em print _i nfo()

probl emrel ease_iteration_variabl es([0])
s lteration variables :::::i:i::
0: 4.0000000000000000E+02 T
1: 1.0000000000000000E+00 X
:::::::: Residual equations ::::::::
-6.2700000000000000E+02 0=(-x) * (873 -T) + 11.0 * (T - 300)
-1. 2000000000000000E+02 0 =120 * x - 75 * (0.12 * exp(12581 * (T - 298) / (298
* 7)) * (1- x)

=9

# We can specify which residual eqautions that shoul d be renpved
probl em hol d_iterati on_variables([1], [0]) # Renove T, and res. eq 1
print('\nproblemhold_iteration_variables([1], [0])')

probl em print _i nfo()

probl em hol d_iterati on_variables([1], [0])
st lteration variables :::::i:i::
0: 4.0000000000000000E+02 T
:::::::: Residual equations ::::::::
1. -1.2000000000000000E+02 0 =120 * x - 75 * (0.12 * exp(12581 * (T - 298) / (298
*M)) *(1-x)

# Most net hods on FMJProblem al so lets you specify if you want to apply the
# nethod for active, held or all variables. Default is active

print (' \nproblemprintlnfo("held")"')

probl em print_info(' held")

probl em print|nfo("held")
st lteration variables ::::ii::
1: 1. 0000000000000000E+00 X
:i::i::: Residual equations ::::::::
0: -6.2700000000000000E+02 0 =(-x) * (873 - T) + 11.0 * (T - 300)

print('\nproblemprintinfo("all")")
problemprint _info('all")

probl em printlnfo("all")
s lteration variables :::::i:i::
0: 4.0000000000000000E+02 T
1: 1.0000000000000000E+00 X
:i::i::: Residual equations ::::::::
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0: -6.2700000000000000E+02 0
1: -1.2000000000000000E+02 0
*M)) (- x)

(- x) * (873 - T) + 11.0 * (T - 300)
120 * x - 75 * (0.12 * exp(12581 * (T - 298) / (298

# It al so possible change m n/ max/ nom nal attributes on the iteration
# variables. This can e.g. be used if the initial guess is close

# to the solution, where tighter bounds provides additional

# gui dance to the solver. This may be particularly useful in case of
# mul tiple solutions.

Parametric Hold Iteration Variables (Python)

In addition to manually held variables there is functionality for setting up hold specifications based on parame-
ters on the FMU. The Modelica compiler provided by OCT supports special annotations for marking variables
for parametric holding, see Section 14.1 for a complete specification. The basic methodology behind parametric
holding isthat iteration variables and residual s are bound to boolean parameters. When the problem is constructed
the variables and residuals bound to boolean parameters that are true are automatically held.

The modél for this example is included in the ExampleM odels.mo-package and the script to run the example is
parametric_hold_IV.py. Inthe model, parametersfor parametric holding is specified for theiteration variablesand
residuas as follows:

nodel twoEqSt eadySt at ePar aHol d
Real x (start = 1);
Real T (start = 400);
par anet er Bool ean test Hol d1
par anet er Bool ean test Hol d2
equati on
0 = 120*x - 75*(0.12*exp(12581*(T - 298)/(298*T)))*(1 - Xx)
annot ati on(__Model on( Resi dual Equati on(hol d = test Hol d1,
iterationVariabl e(hold = testHol d2)=x), name = LongEq));
0 = -x*(873 - T) + 11.0*(T - 300)
annot at i on(__Mddel on( Resi dual Equat i on(hol d = t est Hol d2,
iterationVariabl e(hold = testHol dl)=T), nane = LongEq2));
end t woEQqSt eadySt at ePar aHol d;

fal se;
f al se;

We begin by setting up the problem.

i mport os

from pynodel i ca i nport conpile_fnu

frompyfm inmport |oad_fnu

from oct. st eadyst ate. nl esol inport FMJProbl em

conpi ler_opts = {"interactive_fmu": True,
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"expose_scal ar_equation_bl ocks_in_interactive_fm": True
"hand_gui ded_t eari ng": True}
nodel _nane = ' Exanpl eMbdel s. t wEqSt eady St at ePar aHol d'
name = conpil e_fmi(nodel _name, "/../fil es/exanpl e_nodel s. m",
conpi | er _opti ons=conpi |l er _opts)

model = | oad_frmu(nanme, |og_|evel =4)
nodel . set ("t est Hol d1", True)

probl em = FMJPr obl en( nodel )
Now utilizing pri nt _i nf o() we get the following.

print('problemprint_info()")
probl em print _i nfo()

probl em print _i nfo()
s lteration variables :::::i:i::

1: 1.0000000000000000E+00 X
:::::::: Residual equations ::::::::

0: -6.2700000000000000E+02 LongEq2

print (' problem print_info("paranmetric_hold")")
probl em print i nfo("paranetric_hol d")

probl em print i nfo("paranetric_hol d")
i1 lteration variables :::::i:i::

0: 4.0000000000000000E+02 T
iiiiiii: Residual equations :::i:i:i:i::

1: -1.2000000000000000E+02 LongEq

print('problemprint_info("all")")
problem print _info("all")

problem print _info("all")
st lteration variables :::::i:ii:
0: 4.0000000000000000E+02 T
1: 1.0000000000000000E+00 X
siiiiii: Residual equations ::::i:i:i::
0: -6.2700000000000000E+02 LongEq2
1: -1.2000000000000000E+02 LongEq

9.2.2.4. MATLAB Examples

These examples assume that the +oct folder, as provided in the installation, is on the MATLAB® path. Some of
the examples described are included in thei nst al | / MATLAB/ exanpl es/ nl esol folder.
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Introductory Example (MATLAB)

The simpleintroductory example below shows how an FMJPr obl eminstanceis created, where FMIT isused to load
an FMU model. A solver instanceis created from the FMUPr obl eminstance, and the steady-state solver isinvoked.

import oct.nlesol.*; %I nport nlesol package.
frmu = FMUVbdel MEL(' St eadySt at eProbl em frmu' ) ;
f muPr obl em = FMJUPr obl en{ f nu) ;

sol ver = Sol ver (f nuProbl en) ;

sol = sol ver. sol ve();

Complete Example (MATLAB)

This model is included in the ExampleModels.mo-package and the corresponding script to run it is
example_SmpleSeadySate.m. In a first step, create a steady-state Modelica model and save it to a file
SimpleSteady State.mo.

nodel Si npl eSt eadySt at e
paraneter Real a = 2;

input Real Db(start 2);
Real x (start = -2);
equati on

b=if (x <-1.0)
then x + (x + 1)*a
el se
if (x > 1)
then x + (x - 1)*a
el se
X,
end Si npl eSt eadySt at e;

Next we compile the FMU with the required interactive argument using the MATLAB® OCT compiler interface.

inmport oct.nodelica.*; % I nport conpiler package.
import oct.nlesol.*; %I nport nlesol package.
nodel Nanme = ' Exanpl eModel s. Si npl eSt eady St at e'
conpiler = 'OCT_Mdelica'; % To conpile with the OCT provided Mdelica conpiler that
% supports special handling of iteration and residual variables.
exanpledir = fileparts(nfilename(' fullpath')); % Path to exanple directory
lib = {[exanpl edir, '\Exanpl eMddels.m']}; % Absolute path to nodel

% The options needed for special handling of iteration and residual variabl es.
opt = {"interactive_fmu', true, 'expose_scal ar_equation_blocks_ in_interactive_ fnu', true};
fmuName = conpi | eFMJ(nodel Narme, conpiler, 'libs', Iib, 'options', opt);

Next we use FMIT to create an FMU model instance. Note that we create an FMU for Model Exchange in order
to match the FMU generated by the compiler.

fmu = FMUMbdel MEL( f nuNane) ;
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f muPr obl em = FMJUPr obl en{ f nu) ;

Notethat it isa so possible to supply the names of iteration and residual variables when the FMUPr obl emis created,
for the model above the following would have worked as well:

f muPr obl em = FMUProbl en(fru, {'x'}, {'res_0'});
Thisfeature is useful when not al iteration and residual variablesin an interactive FMU are used.

Next we create a Sol ver instance and invoke the steady-state solver.

sol ver = Sol ver (f muProbl en) ;
sol ver . sol ve()

Thiswill produce the following output (described in more detail in Section 9.2.2.2).

Model name.........................: Exanpl eModel s. Si npl eSt eadySt at e

Nurmber of iteration variables......: 1

Nunber of discontinuity switches...: 2

Switch iteration 1

iter res_norm max_res: ind nlb nab | ambda_nax: ind | anbda
1Js 1. 0000e+00 1.0000e+00: 1 0 0 2.0000e-01: 1r 2.0000e-01
2 8. 0000e-01 8.0000e-01: 1 0 0 2.0000e-01: 1r 2. 0000e-01
3 6. 4000e-01 6.4000e-01: 1 0 0 2.0000e-01: 1r 2.0000e-01
4 5.1200e- 01 5.1200e- 01: 1 0 0 2.0000e-01: 1r 2. 0000e-01
5 4.0960e-01 4.0960e-01: 1 0 0 2.4414e-01: 1r 2.4414e-01
6 3.0960e-01 3.0960e-01: 1 0 0  3.2300e-01: 1r 3.2300e-01
7 2.0960e-01 2.0960e-01: 1 0 0 4.7710e-01: 1r 4.7710e-01
8 1.0960e-01 1.0960e-01: 1 0 0 9.1241e-01: 1r 9.1241e-01
9 9. 6000e- 03 9. 6000e- 03: 1 0 0 1. 0000e+00 1. 0000e+00
10 0. 0000e+00 0. 0000e+00: 1

iter res_norm max_res: ind nlb nab | ambda_max: ind | anbda
1s 0. 0000e+00 0. 0000e+00: 1

Switch iteration 2

iter res_norm max_res: ind nlb nab | ambda_nax: ind | anbda
1 6. 6667e-01 6.6667e-01: 1 0 0 3.0000e-01: 1r 3. 0000e-01
2 6. 0000e- 01 6.0000e- 01: 1 0 0 3.3333e-01: 1r 3.3333e-01
3 5.3333e-01 5.3333e-01: 1 0 0 3.7500e-01: 1r 3. 7500e-01
4 4.6667e-01 4.6667e-01: 1 0 0 4. 2857e-01: 1r 4.2857e-01
5 4.0000e-01 4.0000e-01: 1 0 0 5.0000e-01: 1r 5. 0000e-01
6 3.3333e-01 3.3333e-01: 1 0 0 6.0000e-01: 1r 6. 0000e-01
7 2.6667e-01 2.6667e-01: 1 0 0 9.0000e-01: 1r 9. 0000e-01
8 1.8667e-01 1.8667e-01: 1 0 0 1. 0000e+00 1. 0000e+00
9 1.2444e-01 1.2444e-01: 1 0 0 1. 0000e+00 1. 0000e+00
10J 8.2963e-02 8.2963e-02: 1 0 0 1. 0000e+00 1. 0000e+00
119 2.8553e-10 -2.8553e-10: 1 0 0 1. 0000e+00 1. 0000e+00
12 0. 0000e+00 0. 0000e+00: 1

Switch iteration 3

iter res_norm max_res: ind nlb nab | ambda_max: ind | anbda
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1 6. 6667e-01 -6.6667e-01: 1 0 0 2.0000e-01: 1r 2.0000e-01
2 2.6667e-01 -2.6667e-01: 1 0 0 4.0000e-01: 1r 4.0000e-01
3 5.3333e-02 5.3333e-02: 1 0 0 1. 0000e+00 6. 0000e-01
4 4.2667e-02 -4.2667e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
5 3.4133e-02 3.4133e-02: 1 0 0 1. 0000e+00 6. 0000e-01
6 2.7307e-02 -2.7307e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
7 2.1845e-02 2.1845e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
8 1.7476e-02 -1.7476e-02: 1 0 0 1. 0000e+00 6. 0000e- 01
9 1.3981e-02 1.398le-02: 1 0 0 1. 0000e+00 6. 0000e-01
10J 1.1185e-02 -1.1185e-02: 1 0 0 1. 0000e+00 1. 0000e+00
11J 7.5318e-11 7.5318e-11: 1 0 0 1. 0000e+00 1. 0000e+00
12 7.4015e-17 7.4015e-17: 1

Nunber of function eval uations: 60
Nunmber of jacobi an eval uations: 5
Sol ver finished

Total tinme in solver: 0.35 s

solution = 1.3333
Log Information Retrieval (MATLAB)

Below an example is presented where a steady-state problem is solved and the generated |og-file provided to the
LogVi ewer. Thismodel isincluded in the ExampleM odels.mo-package and the corresponding script to run it is
example_LogViewer.m. Here we assume that the model Exanpl eMbdel s. t woEqSt eady St at e has been compiled
exactly asin the previous example.

% Use FMT to create an fnu nodel object.

% Verbose is an argunent to FMT to indicate that we w sh
%to retain all log informati on generated in the FMJ

fmu = FMUMbdel MEL(f nuNane, 'verbose');

% Create the problemclass instance fromthe fnu and supply it to the
% sol ver.

f muPr obl em = FMJUPr obl en{ f nu) ;

sol ver = Sol ver (f muProbl em ;

% Set a log level sufficiently high to get values of iteration

% variables emtted to the log file.

sol ver.set Options('log_level', 5)

% Sol ve the probl em
sol ver. sol ve();

% Create the LogViewer fromthe solver class instance we
% created above as such
| ogVi emwer = LogVi ewer (sol ver)

% LogVi ewer can al so be supplied with the log-file, e.g.
% LogVi ewer (' t woEqSt eadyState_| og. xm ")

129



Steady-state Solver Interface
for MATLAB® and Python

%It is now possible to play around and retrieve i nformation fromthe |og.
%E. g. retrieve the values of the iteration variables at different

% tinmes during the solver invocation.

iterDatalLatest = | ogViewer.getlterationVariabl es()

% Pl ot the data
iterVarNanmes = fnmuProbl em getlterationVariabl eNames();
figl = figure(l);
plot(iterDatalLatest{1}(:, 1))
x|l abel ([' Values for: ', iterVarNames{1}, .
as a function of iterations in newton solve invocation'])

% For several functions one may specify which iteration variables one is interested in.
nom nal Dat aLat est = | ogVi ewer. getlterationVari abl eNom nal ({iterVarNanmes{1}})

% Retrieve the solver trace
sol ver Trace = | ogVi ewer . get Sol ver Tr ace()

%ol f the steady-state solver was used several tines on the sane problemit will have
%filled the log file with information fromthe different solver invocations. To get

% i nformati on about a particular solver invocation and/or solve provide the solve index
% as argunent. Sol ve indices can be found through

| ogVi ewer . get Sol vel nfo();

% E. g. to get the values of iteration variables for the second

% sol ver invocation log present in the log the follow ng is used:

% Sol ve index is 4 since two Newton sol ves have been perforned in sol ver invocation 1.

iterDatalLatest = | ogViewer.getlterationVariabl es(4)

%O to only get information for a particular variable

iterDatalLatest = | ogViewer.getlterationVariabl es({iterVarNanes{1}}, 4)
% Ot her functions provided by LogVi ewer

resVar Dat aLat est = | ogVi ewer. get Resi dual s()

resDat aLat est = | ogVi ewer. get Scal edResi dual Nor ()

j acDat aLat est = | ogVi ewer. get Jacobi ans()

i ter NunDat aLat est = | ogVi ewer. get Nunber Of I t er ati ons()

%%b For sone of LogViewer's functions it is possible to specify a solve index
%together with an iteration nunber to retrieve data only fromthere.

% Note fromthe getSol vel nfo() output that solve index represents a New on
% sol ve

newtonStep = | ogVi ewer. get Step(' Newt on', 'unscaled', 2, 1)

| ambdaMax = | ogVi ewer. get St epRati o(' | anbda_nax', 2, 1)

The following plot was generated in the exanple:
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Figure 9.2 Using LogViewer to extract datafrom alog filein MATLAB®.

For log files generated by FMT:

% FM T generates logs in .txt format. Supply these to LogVi ewer which will

% extract the XML data present in them

LogVi ewer (' t wEqSt eadyState_| og. txt');

% LogViewer will create a new file, typically nanes 'twoEqSteadyState | og_extracted. xm '
%in this case and load it as well.

Creating Custom Problem Class (MATLAB)

It is aso possible to implement subclasses to the Pr obl emclass. Below, a complete class TestProblem which is
asubclass of Probl emis given.

% Sol vi ng:
WFEX = if(x < -1)
% X + (x+1)* COEFF;
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% el se

% if(x > 1)

% x + (x - 1)*CCEFF;

% el se

% X;

% FX, COEFF defined below, INITX - initial X

cl assdef Test Probl em < oct. nl esol . Probl em

properties (Access = public)
SWO;
Swi;
COEFF = 2;
FX = 2;
end

met hods( Access = public)
function this = Test Probl em()
this.sw0 = fal se;
this.swl = fal se;
end

function [nunberOfIterationVariabl es] = get NunberOf Iterati onVari abl es(this)
nunber & I terati onVari ables = 1;
end

function [nunDi scontinuities] = getNunber O Di scontinuities(this)
nunDi scontinuities = 2;
end

function [indicators] = eval uateDi scontinuitylndicators(this, x)
indicators = [-x - 1; x - 117;
end

function [residual] = eval uat eResi dual s(this, x)
if(this.swo)
vV = x + (x + 1)*this. COEFF;
el sei f(this.swl)
vV = X + (x - 1)*this. COEFF;
el se
vV = X;
end
residual = this.FX - v;
end

function [xlInitial] = getlnitial Guess(this)
xlnitial = 2;
end

function makeDi sconti nuousChange(this, x)
this.sw0 = (x < -1);
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this.swl = (x > 1);
end
end
end

This class can then be sent to the solver in much the same manner as above:

inmport oct.nlesol.*; %Inport nlesol package.
test Probl em = Test Probl em() ;

sol ver = Sol ver (testProblemn;

sol ution = sol ver. sol ve()

Hold lteration Variables (MATLAB)

This example shows how the hold iteration variable functionality works for FMJPr obl em It uses the model from
Section 9.2.2.1, which isincluded in the ExampleM odels.mo-package. The MATLAB® script to run this example
isexample HoldIVs.m.

% The FMJProblemin this exanple contains two iteration variables. Using
Y% printinfo its structure is shown:

f muPr obl em printl nfo()
iiiiiiii lteration variables i
1: 4.0000000000000000E+02 T
2: 1.0000000000000000E+00 x
i Residual equations :::::i:i::
1: -6.2700000000000000E+02 0O = (- x) * (873 - T) + 11.0 * (T - 300)
2: -1.2000000000000000E+02 LongEq

% To hold an iteration variable the nethod "hol dlterationVariabl es" is
% provided. Let's hold variable T

f muPr obl em hol dl terati onVari abl es([1])

% We could also use {'T'} as an argunent

% Using printlnfo again we see that T, and the correspondi ng residual
% equation is renoved.
f muPr obl em pri ntlnfo()
iiiiiii: lteration variables @i
2: 1.0000000000000000E+00  x
i Residual equations ::::i:i:i::
2: -1.2000000000000000E+02 LongEq

% To restore the system we can use the nethod "rel easelterationVari abl es"
f muPr obl em rel easelterati onVari abl es([1])

f muPr obl em pri ntlnfo()
i lteration variables @i
1: 4.0000000000000000E+02 T
2: 1.0000000000000000E+00 x
i Residual equations ::::i:i:i::
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1: -6.2700000000000000E+02 O = (- x) * (873 - T) + 11.0 * (T - 300)
2: -1.2000000000000000E+02 LongEq

% We can specify which residual equations that shoul d be renoved

f muPr obl em hol dlterati onVari abl es([2], [1]) % Renpbve x, and res. eq 1
f muPr obl em pri ntlnfo()
i Iteration variables @i
1: 4.0000000000000000E+02 T
:i:i:::: Residual equations ::::::::
2: -1.2000000000000000E+02 LongEq

% Most met hods on FMJUProbl em al so |lets you specify if you want to apply the
% net hod for active, held or all variables. Default is active.

f muPr obl em printInfo(' held")
i lteration variables @i
2: 1.0000000000000000E+00  x
:::::::: Residual equations ::::::::
1. -6.2700000000000000E+02 O = (- x) * (873 - T) + 11.0 * (T - 300)

frmuProbl em printinfo('all")
iiiiiiit lteration variables @i
1: 4.0000000000000000E+02 T
2: 1.0000000000000000E+00 x
iiiiiii: Residual equations :::::i:i::
1: -6.2700000000000000E+02 O = (- x) * (873 - T) + 11.0 * (T - 300)
2: -1.2000000000000000E+02 LongEq

%It al so possible change m n/nmex/nom nal attributes on the iteration
% variables. This can e.g. be used if the initial guess is close
%to the solution, where tighter bounds provides additi onal

% gui dance to the solver. This may be particularly useful in case of
% nmul tiple solutions.

Parametric Hold Iteration Variables (MATLAB)

In addition to manually held variables there is functionality for setting up hold specifications based on parame-
ters on the FMU. The Modelica compiler provided by OCT supports special annotations for marking variables
for parametric holding, see Section 14.1 for a complete specification. The basic methodology behind parametric
holding isthat iteration variables and residual s are bound to boolean parameters. When the problem is constructed
the variables and residuals bound to boolean parameters that are true are automatically held.

The model for this example is included in the ExampleModels.mo-package and the script to run the example
is example_ParametricHoldlV.m. In the model, parameters for parametric holding is specified for the iteration
variables and residuals as follows:
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nodel twoEqgSt eadySt at ePar aHol d
Real x (start = 1);
Real T (start = 400);
par anet er Bool ean test Hol d1
par anet er Bool ean t est Hol d2
equati on
0 = 120*x - 75*(0.12*exp(12581*(T - 298)/(298*T)))*(1 - Xx)
annot at i on(__Mddel on( Resi dual Equat i on(hol d = test Hol d1,
iterationVariabl e(hold = testHol d2)=x), nane = LongEq));
0 = -x*(873 - T) + 11.0*(T - 300)
annot ati on(__Model on( Resi dual Equati on(hol d = test Hol d2,
iterationVariabl e(hold = testHol d1)=T), nane = LongEqg2));
end t woEqSt eadySt at ePar aHol d;

f al se;
fal se;

Thismodel could be used to set up parametric holding:

fmu = | oadFMJ( f nuNan®) ;
fu. set Val ue(' test Hol d1', true);
f muPr obl em = FMJUPr obl en{ f nu) ;

% Print the active variables - notice that an iteration/residual
% pair is held
f muPr obl em printl nfo()
iiiiiii: lteration variables i
2: 1. 0000000000000000E+00 x
iiiiii:: Residual equations :::::i:i:i:
1: -6.2700000000000000E+02 LongEqg2

% Print the paranetrically held variabl es
f muPr obl em print| nfo(' paranetri cHol d')
iiiiiii: Iteration variables @i

1: 4.0000000000000000E+02 T
:::i:::: Residual equations ::::::::

2: -1.2000000000000000E+02 LongEq

Parametric Start Attributes (MATLAB)

If the iteration variables were automatically found as part of the call to the constructor of FMUPr obl em then the
initial guessfor all iteration variables that have start values that depend on a parametric expression will be atered.
The parametric expression will be evaluated and the value set as the initial guess for all such variables.

It is possible to bypass this behavior and to set the initial guess explicitly if the values are set on the FMU followed

by initialization of the FMU before it is passed as an argument to the constructor.

The model for this example is included in the ExampleM odels.mo-package and the script to run the example is
example_ParametricSart.m. In the model, one of the iteration variables has a parametric expression in its start

value:
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nodel twoEqSt eadySt at ePar aSt art

paranmeter Real x_start = 1,

Real x (start x_start);

Real T (start 400) ;
equati on

0 = 120*x - 75*(0.12*exp(12581*(T - 298)/(298*T)))*(1 - x)
annot at i on(__Mddel on( Resi dual Equati on(iterati onVari abl e=x)));
-X*(873 - T) + 11.0*(T - 300)
annot at i on(__Mddel on( Resi dual Equati on(iterati onVari abl e=T)));
end twoEqSt eadySt at eParaStart ;

0

This model would have the initial guess for x altered as part of the call to the constructor of FMUPr obl em

% Change intial guesses for the iteration variables. The

% vari abl es whose start values are not determ ned by a

% paraneteric are not changed directly since FMJ not initialized before
%call to FMJProbl em constructor. Fixed start values will be used if there
% are any, otherw se parametric.

frmu = | oadFMJ f nuNan®) ;

frmu. setValue(' x_start', 10); % This will change guess for x
fru.setValue('T', 20); % This will not change guess for T

f muPr obl em = FMJUPr obl en{ f nu) ;

f mu. get Val ue(' x')
10

fmu. getVal ue(' T')
400

% Change intial guesses for the iteration variables. The

% vari abl es whose start values are set as paraneteric are not
% changed directly since fru initialized

fmu = | oadFMJ f nuNan®) ;

fmu. setVal ue(' x_start', 10); % This will not change guess for x
fru. setValue(' T', 20); % This will change guess for T
fru.fminitialize();

f muPr obl em = FMJUPr obl en{ f nu) ;

f mu. get Val ue(' x")

1

fmu. get Val ue(' T')

20

% I1f the value of an iteration variable with a parametric start

% expression is explicitly set it will not be used since fnu not initialized:
fmu = | oadFMJ( f nuNan®) ;

fru. setVal ue(' x', 10); % This will not change guess for IterVarl

f muPr obl em = FMJUPr obl en{ f nu) ;

fmu. get Val ue(' x')

1
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% However, if fmilnitialize was call ed before instantiation of the FMJProbl em
% t hen the behavi or woul d be bypassed and the above woul d work.

fmu = | oadFMJ( f nuNan®) ;

fmu. set Val ue(' x', 10);

frmu. fmilnitialize(); % Bypass paraneteric start behavior

f muPr obl em = FMUPr obl en{ f mu) ;

f mu. get Val ue(' x")

10

% The sane holds if the FMJProbl em constructor is called with the
% argunent pair ('guesses', 'interactive').

frmu = | oadFMJ( f nuNan®) ;

fmu. set Val ue(' x', 10);

f muPr obl em = FMUPr obl en(fnmu, 'guesses', 'interactive');
f mu. get Val ue(' x')
10

% No initialization but FMJProbleminteractive

fmu = | oadFMJ f nuNan®) ;

fru. set Val ue(' x_start', 10); % This will not change guess for x
f muPr obl em = FMJPr obl en{ f mu, 'guesses', 'interactive');

fmu. get Val ue(' x')

1

fru. get Val ue(' T')

400

% Initialization but FMJProbl em paranetric, change of x_start has effect
% since GUESS KIND set to 'paranetric'

fmu = | oadFMJ f nuNan®) ;

fru. set Val ue(' x_start', 10); % This wi |l change guess for x
fru.fminitialize();

f muPr obl em = FMUPr obl en{f mu, 'guesses', 'paranetric');

f mu. get Val ue(' x")

10

fu. get Val ue(' T')

400
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Chapter 10. Interactive Continuation
Solver in MATLAB® and Python

10.1. Introduction

A continuation solver is intended for solution of parameterized steady-state problems formalized as non-linear
equation systems. The solver is primarily intended to be used with the non-linear equation solver that is a part of
OPTIMICA Compiler Toolkit. The intended application is solution of steady-state model equations packaged into
FMUs (Functional Mockup Units) ([FM12017]). The solver utilizes the interfaces provided by the FMI Toolbox
for MATLAB® and PyFMI for Python, to interact with FMUSs.

The solver isintended to be applied for parameterized equation systems on the form:
F(xa, G(a))=0, xmin<=x<=xmax, al<=a<=al (10.2)

Here xais acolumn vector of unknowns of length nx and F(x,G(a)) isacolumn vector of residuals. The number of
residualsisequal to the number of unknownsx. aisthe continuation parameter that definesthe boundary conditions
G(a). The continuation solver rely on an external solver for finding the solution to the steady-state equationsfor any
specified, fixed, value of the continuation parameter. Continuation solver assumes that solution for a0 is available
or can be easily computed. It then construct a sequence of steady-state problems by modifying the continuation
parameter, striving to reach a=al, while starting from a0. The equations are solved using the external solver starting
with an initial guess for the iteration variables: xa = x0. Accuracy is controlled both by the solver options and
nominal values for the iteration variables, xnom.

The function F(xa,G(a)) is expected to be C*1 continuous with respect to x inside the bounds and with respect to
the continuation parameter a on the processed interval.

10.2. Solver Interface

The solver interfaceis object-oriented and is contained in the MATL AB® package: oct.nlesol and Python package:
oct.steadystate.nlesol, respectively. Detailed documentation of the methods of the provided classes is available at
the MATLAB® command prompt via help and doc commands and through Python docstrings.

The package contains the following classes:

Cont i nuat i onPr obl emisan abstract interface class defining the parameterized non-linear equation system as used
by the ContinuationSolver. It is possible to define custom problems by sub-classing this class and overloading the
required methods.

Cont i nuat i onFMUPr obl emis a sub-class of the ContinuationProblem that provides the means to interact with
an FMU. This class relies on an instance of oct.nlesol.Solver/oct.steadystate.nlesol.Solver class attached to a
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oct.nlesol.FMUProblem/oct.steadystate.nlesol.FMUProblem class to process steady-state problems in the FMU.
Note that in order to use the default constructors the FMU needs to follow the interactive FMU variable naming
convention as implemented when using the interactive_fmu flag to the OCT compiler. That is, the iteration vari-
ables are identified by variables named iter_<nnn> where nnn is the iteration variable index. The description of
each such variable corresponds to a name of the actual iteration variable that is defined as an input for the FMU.
The corresponding residuals are identified by the output variables named res_<nnn>. Remaining input variables
on the FMU are assumed to define the boundary conditions used for continuation.

Cont i nuat i onSol ver isaclassthat encapsulates the continuation solver. Thereisfunctionality to retrieve and set
solver options and run acontinuation on equationsthat are defined by an instance of the ContinuationProblem class.
The solution is returned from a call to the solve function. It can also be retrieved from the ContinuationProblem
class on solver exit.

Continuation solver is controlled by a number of options listed in the table below

Table 10.1 Solver options

Option Default Description
init_step 0.5 Initial step length in continuation pa-
rameter [eps(1), 1000]
log_level 4 Log level for the solver [0, 6]
min_step 0.001 Minimum step legth in continuation
parameter [eps(1), 1000]
max_step 10 Maximum step length in continuation
parameter [eps(1), 1000]
step_increase factor 15 Factor used to increase the step length
on success |1, 10]
step_decrease factor 2 Factor used to decreasethe step length
on failure (1, 10)
save_intermediate_solutions True Flag indicating if intermediate results
(Python only) should be stored.

10.3. Example Python script

The example below demonstrates the intended call sequence for the solver.

# Load the
f runane = ' nodel . f mu'
frmu = | oad_f mu( f munane)

# Inport needed cl asses
from oct. st eadystate. nl esol inport FMJProbl em Solver, ContinuationSol ver,
Cont i nuat i onFMJPr obl em
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# Construct the FMJProbl em class providing FMJ as an ar gunent
frmu_p = FMJProbl ent( f mu)

# Create the steady-state sol ver

ss_sol ver = Sol ver (f mu_p)

# Create the continuati on probl em

# By default all FMJ inputs are taken as boundary conditions.

# Alternatively, second argunent can be used to specify the |ist
# of variable names representing boundary conditions.

probl em = Conti nuati onFMJPr obl en(ss_sol ver)

# Set the continuation target boundary conditions

# Set target values for continuati on on boundary conditions

# Here we choose 2 as target and 1 as starting point (optional)
probl em set up_conti nuati on_boundary([2],[1])

# Construct the ContinuationSol ver class for the ContinuationProbl em
sol ver = Conti nuati onSol ver (probl em;

# Retrieve the default sol ver options

opt = sol ver. sol ve_options()

# Set maxi mum step in continuation to 0.2

opt[' max_step'] = 0.2

# Set |low |l og | evel

opt['log_level'] =2

# Run continuation
sol ution = sol ver. sol ve(opti ons=opt)

10.4. Example MATLAB® script

The example below demonstrates the intended call sequence for the solver.

% lnstantiate and initialize FMJ using FM Tool box
frunane = 'nodel . fmu';

fmu = FMUMbdel MEL( f nunan®) ;

fru. fm | nst anti at eMbdel () ;

fru.fminitialize();

% | nport the package nanespace

import oct.nlesol.*

% Construct the FMJProbl em cl ass providing FMJ as an ar gunent
fmu_p = FMJProbl en( f nu) ;

% Create the steady-state solver and set low | og | evel

ssSol ver = Sol ver (fnu_p);

ssSol ver.set Options(‘log_|evel’,2);

% Create the continuati on probl em

% By default all FMJ inputs are taken as boundary conditions.

% Al ternatively, second argunent can be used to specify the |ist
% of vari abl e nanes representing boundary conditions.
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probl em = Conti nuati onFMJPr obl en( ssSol ver);

% Set the continuation target boundary conditions

% Set target values for continuation on boundary conditions
% t ar get Boundar yVect or = [<val ue>; <val ue>; .,; <val ue>];

probl em set upCont i nuat i onBoundar y(t ar get Boundar yVect or) ;

% Construct the ContinuationSol ver class for the Continuati onProbl em
sol ver = Conti nuati onSol ver (probl em;

% Retrieve the default solver options

opt = sol ver.get Options();

% Set maxi mum step in continuation to 0.2

opt. max_step = 0. 2;

sol ver. set Opti ons(opt);

% Run continuati on between continuation paranmeter values 0 and 0.5
% The argunents are optional and defaults to continuati on between 0 and
sol ution = sol ver.sol ve(0,0.5);
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Chapter 11. Steady-State Diagnostics
In Python

In the steady-state package there are several different diagnostic tools available to aid the analysis of solving and
converging model s using the steady-state solver interface from Section 9.1. In this chapter we briefly discuss what
they can do and how to apply them. Among the steady-state examples you can find an example notebook named
di agnosti cs-tenpl ate. i pynb. In the example notebook two different models are analyzed to demonstrate the
application of the diagnostic tools.

11.1. Examples of Using The Diagnostic Tools

The diagnostics driver scripts provide pretty-printed ASCII output (when in the console) and HTML output, e.g.
in Jupyter Notebook, allowing for easy overview of the problem properties suitable to the different diagnostic
modes. We continue by going through each diagnostic tool, with some examples of how they can be used. The
documentation for each method can be accessed using the built-in python function hel p, where you can see all
available input parameters, as well as a brief explanation for each.

11.1.1. Plot and Analyze Residuals

Thetool anal yze_r esi dual s allowsusto plot residuals as afunction of a specific variable. To do thiswe require
an instance of the object | ndependent Vari abl e. An | ndependent Var i abl e is used to initialize an independent
variable to plot residuals against. We can import these simply by typing the following:

from oct. st eadyst at e. di agnosti cs. anal yze_resi dual s i nport anal yze_resi dual s,
| ndependent Vari abl e

When we create an instance of | ndependent Var i abl e we also have to decide the range and the number of data
points to plot. In this example we create two instances of | ndependent Vari abl e for our plots. We use different
ranges for each axis and 100 points for each:

T
X

| ndependent Vari abl e("T", 0, 1000, 100)
| ndependent Vari abl e("x", 0, 10, 100)

For agiven instance of oct . st eadyst at e. nl esol . Probl emdenoted by pr obl em we can plot the iteration vari-
ables T and x against residuals with indices 0 and 1.

ares = anal yze_residual s(problem [0,1], [T,x])

This generates the resultsin Figure 11.1
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Figure11.1 A plot of the residualswith indices 0 and 1 asafunction of theiteration variables T and x respectively.

We can also plot each residual as a multivariate function of the variables T and x, results seen in Figure 11.2.

ares = anal yze_residual s(problem [0,1], T, Xx)
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woo0 O

Figure 11.2 A plot of the residuals with indices 0 and 1 as a multivariate function the iteration variables T and x.

The object returned by anal yze_r esi dual s can be used to change the type of the plot. For example, using the
object ar es from above:

ares. pl ot (pl ot _node="map")

Which generates the results seen in Figure 11.3.
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Figure 11.3 A heatmap of theresidualswithindices0and 1 asamultivariatefunction theiteration variables T and x.

11.1.2. Diagnose Singular System

To diagnose reasons behind a singular system one can use the diagnostic tool di agnose_si ngul ar _system We
import it smply by:

from oct . st eadyst at e. di agnosti cs. di agnose_si ngul ar _system i nport di agnose_si ngul ar_system

Thistool usesinstancesof oct . st eadyst at e. nl esol . LogVi ewer Oroct . st eadyst at e. nl esol . Probl em Inthis
example we use an instance of oct . st eadyst at e. nl esol . LogVi ewer denoted by 1 v. Then, the diagnostic tool
isapplied asfollows:

di agnose_si ngul ar _systen(lv, solve_index=1, iteration=5)
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Note however that solve index and iteration are only required when using an instance of
oct . st eadyst at e. nl esol . LogVi ewer . This generates the resultsin Figure 11.4.

Characteristics of 3x3 Jacobian for Problem

Unscaled Scaled

Rank 2 2
Condition number 4.51130514743e+16 1.21203083393e+186

O max 343964211388 227251722398

Omin  7.0244044676%-17  1.874066307094e-16

Linearly dependent groups

# Scaled o Group Var name

0 1.87496650794e-15

Ve O y

1 z

Residuals 0 res_1
1 res_2

2 res_@

Groups belonging to the maximum singular value

# Scaled o Group Var name

0 2272531722396

Vs 0 X

1 z

2 y

Residuals 0 res_2
1 res_1

2 res_g

Figure 11.4 HTML output from the diagnostic tool di agnose_si ngul ar _syst em
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11.1.3. Get Active and Limiting Bounds

The diagnostic tool get _bounds displays anicely formatted table of all active/limiting bounds. If | v isan instance
of oct . st eadyst at e. nl esol . LogVi ewer , We can use get _bounds accordingly:

from oct . st eadyst at e. di agnosti cs. get _bounds i nport get_bounds
get _bounds(I v)

This generates the resultsin Figure 11.5.

Limiting and Active Bounds

Solve index Iteration Limiting min Limiting max Active min Active max Interval IV name
1 0 o [9.00000e-01, 179769+ 308] X

o o [-1.7976%+308, 1.00000e+01] T

1 o o [9.00000e-01, 179769+ 308] X

o o [-1.7976%+308, 1.00000e+01] T

2 0 o o [9.00000e-01, 179769+ 308] X

o o [-1.7976%+308, 1.00000e+01] T

Figure 11.5 HTML output from the diagnostic tool get _bounds. When viewing the output in an HTML format,
the interval values are colored orange when variables are on limiting bounds and red for active bounds. Note that
we have alimiting bound in the first iteration, and active bounds in the other iterations.

11.1.4. Get Errors and Warnings

Using the diagnostic tool get _er r or s_and_war ni ngs it is possible to summarize al errors and warnings encoun-
tered throughout alog. For a given instance of oct . st eadyst at e. nl esol . LogVi ewer , which we denote by 1 v,
we write:

from oct. st eadyst at e. di agnosti cs. get_errors_and_warni ngs i nport get_errors_and_war ni ngs
get _errors_and_war ni ngs(| v)

The number of errors and warnings displayed can be controlled with the input keyword 1 i mi t _anount . Using the
default value, the results can be seen in Figure 11.6 This generates the resultsin Figure 11.6.
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Errors and warnings
StartOutOfBounds Start value start=4,0000000000000000E +002 is not between min=-1.7976931348623157E +208 and max=1.0000000000000000E +001 for the iteration
{Warning) variable iv=T in block=oct.steadystate.nlesol.Solver:1. Clamping to clamped_start=1.0000000000000000E+001.
min -1.79769313486e+308
max 100
v T
start  400.0
clamped start 10.0
solve_index 0
block octsteadystate.nlesol.Solver:1
KinsolError Error occured in function=KINSel at t=0.0000000000000000E+000 when solving block=oct.steadystate.nlesol.Solver:1
(Error) msg=The line search algorithm was unable to find an iterate sufficiently distinct from the current iterate.
functionl2Norm=4.6836914282048028E +000, scaledSteplength=1.1102230246251560E-016, tolerance=9.9999999999939995E-007
function KINSol
scaledSteplength  1.11022302463e-16
scaled_residuals [4.59640788, -09]
iteration 2
functionl2Norm  4.6836014282
t 00
ivs [10.,09]
msg  The line search algorithm was unable to find an iterate sufficiently distinct from the current iterate.
solve_index 1
tolerance 1e-06

block octsteadystatenlesol.Solver:1

NonConverge The equations with initial scaling didn't converge to a solution in black=octsteadystate.nlesol.Solver: 1
(Warning)

solve_index 0

ivs [10.,09]
scaled_residuals [4.50640783, -0.9]
iteration 2
block octsteadystate.nlesol.Solver:1

KinsolError Error occured in function=KINSel at t=0.0000000000000000E+000 when solving block=oct.steadystate.nlesol.Solver:1
(Error) msg=The line search algorithm was unable to find an iterate sufficiently distinct from the current iterate.

Figure 11.6 HTML output from the diagnostic tool get _er r or s_and_war ni ngs. When viewing the output in an
HTML format, warnings are colored orange and errors are colored red.

11.1.5. lllegal Residuals in Solve

When running into illegal residuals, the diagnostic tool i | | egal _r esi dual s isconvenient because it tabulatesthe
residual equationswithillegal values. Thistool workswith aninstanceof oct . st eadyst at e. nl esol . LogVi ewer .
Optionally, if also given the corresponding instance of oct . st eadyst at e. nl esol . Probl ema more detailed de-
scription is displayed for the residual equations. For a given instance of oct . st eadyst at e. nl esol . LogVi ewer
which we denote by | v, and an instance of oct . st eadyst at e. nl esol . Pr obl emdenoted by pr obl em we use the
diagnostic tool accordingly:

from oct. st eadystate. di agnostics.illegal _residuals inmport illegal_residuals
illegal _residual s(lv, problem
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This generates the output in Figure 11.7. In this example the initial evaluation resulted in illegal residuals before
any iteration was performed.

lllegal residuals

Solve index Iteration Value Residual index Description

0 Mal 0 x = acos(y)
oo 1 y=yiz
Mal 3 x1 = acos(yl)
oo 4 y1 = ylsfzl
NaMN 0 x = acos(y
oo 1 y=yiz
Mal 3 x1 = acos(yl)

co 4 y1 = yl/z1

Figure 11.7 HTML output from the diagnostic tool i I | egal _r esi dual s.

11.1.6. Nominals and lIteration Variable Diagnostics

The diagnostic tool anal yze_i terati on_vari abl e_magni t udes makes it possible to diagnose nominals whose
magnitude differ alot compared to the magnitude of its corresponding iteration variable. The factor that defines
too large nominals is easily changed through the input keyword f act or . For example, for a given instance of
oct. st eadyst at e. nl esol . LogVi ewer Which we denote by | v, we can use thistool as:
from oct. st eadyst at e. di agnosti cs.iv_di agnostics inport \

anal yze_iteration_variabl e_magni t udes
anal yze_iteration_variabl e_nmagni t udes(| v)

This generates the resultsin Figure 11.8.
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Suspicious Nominals

Summary

IV nominal

IV name

1.345000000000000e-07

1.123456789000000=+08

1.000000000000000=+01

=]

IV value

IV nominal

Ratio

IV name

Details
solve_index iteration
1 0
1
2
3
2 0

Figure 11.8 HTML output from diagnostic tool anal yze_i t erati on_vari abl e_magni t udes.

1.200000000000000e <01

1.000000000000000e-02

1.000000000000000e-04

1.199975747760534e+01

1.200000000000000e-02

3.175615690872780e-04

1.1999466449841852+01

1.440000000000000e-02

5.786334667000580e-04

1.199911721521620e+01

1.728000000000000e-02

8.919241654670848e-04

1.199911721521620e+01

1.728000000000000e-02

8.019241654670848e-04

1199869813173 144e+01

2.073600000000000e-02

1.267870635918404e-03

1.123456789000000=+08

1.345000000000000e-07

1.000000000000000e <01

1.123456789000000=+08

1.345000000000000e-07

1.000000000000000e <01

1.123456789000000=+08

1.345000000000000e-07

1.000000000000000e <01

1.123456789000000=+08

1.345000000000000e-07

1.000000000000000e <01

1.123456789000000=+08

1.345000000000000e-07

1.000000000000000e <01

1.123456789000000=+08

1.345000000000000e-07

1.000000000000000e <01

1.068131869200000e-07
7.4340442379182162+04
1.000000000000000e-05
1.068110282041773e-07
8.92193308550185%=+04
3.175615690872780e-05
1.068084377372688e-07
1.070631970260223e+05
5.786354667000580e-05
1.068053291653231e-07
1.2847583643122682+05
8.91924165467084%e-05
1.068053291653231e-07
1.2847583643122682+05
8.01924165467084%e-05
1.068015938617738e-07
1.541710037174721e+05

1.267370635918404e-04

=

3]

&
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11.1.7. Non-zero Residuals and Their Dependencies

This tool lists non-zero residuals sorted by magnitude, along with their affecting iteration variables. If also giv-
en the optional argument | og_vi ewer the residuals are sorted according to the magnitudes of their scaled val-
ues. The number of non-zero residuals that is listed can be controlled through the input keyword n. We demon-
strate this using an instance of oct . st eadyst at e. nl esol . Probl em denoted by pr obl em and an instance of
oct . st eadyst at e. nl esol . LogVi ewer denoted by | v, as well as the optional parameterssol ve_i ndex andi t -
eration.

from oct. st eadyst at e. di agnosti cs. non_zero_residual s i mport non_zero_residual s
non_zero_residual s(problem |v, solve_index=1, iteration=4)

This generates the resultsin Figure 11.9.

Non-zero residuals

Residual values

Unscaled Scaled Index Description
-115.691828626  -0.000271324009619 1 F ©@=120 % x - 75 % (0.12 * exp(12581 = (T - 298) /

Affecting IVs Value Index MName
347.70258622 0T
0.998889591422 1 x

-0.0143293912432  -2.98528984234e-05 0 8=(-x)* (873 - T) + 11.8 * (T - 388)

Affecting IVs Value Index MName
347.70258622 0T
0.998889591422 1 x

Figure 11.9 HTML output from the diagnostic tool non_zer o_r esi dual s.

11.1.8. Line-search Plot

It is possible to perform line-search diagnostics at a specific iteration during the solve using the diagnos-
tic script 1ine_search_plot. It can help to understand how the norm of the residuals behaves aong ei-
ther the Newton step without taking iteration variable bounds into account or along the projected step.
For a given instance of oct. st eadystate. nl esol . Probl em denoted by problem and |v an instance of
oct . st eadyst at e. nl esol . LogVi ewer , We Write:

from oct. st eadyst at e. di agnostics.line_search_plot inport |ine_search_pl ot
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i ne_search_pl ot (probl em |o0g_viewer, solve_index=1, iteration=25,
step_type="proj ected”, scal ed_resi dual s=Tr ue)

This generates the resultsin Figure 11.10.

Scaled residual norm along solver step

—— Scaled residual norm
Max step considered
posey L Actual step
== Actual residual norm
0.025
0020
0.015
0010

00 02 04 06 08 10
Line search parameter A

Line search analysis

Amax 1.0
Aactual 0705841394003
[StePhewton]  0.28376118473

IStepprojecteal  0.38376119473

Figure 11.10 A plot generated by using the diagnostic tool 1 i ne_sear ch_pl ot .

We can aso plot using alogarithmic grid, shown in Figure 11.11.

l'i ne_search_pl ot (probl em |og_viewer, solve_index=1, iteration=25,
step_t ype="proj ected", scal ed_resi dual s=Tr ue,
| anbda_axi s_| og=Tr ue)
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Scaled residual norm along solver step

1
3x10°%
2x 1072
—— Scaled residual norm
10-2 Max step cansidered
Actual step
—-= Actual residual norm

107 10 1901t 10! 1007 1wt 10 10!
Line search parameter A

Line search analysis

?‘max 1.':
Aactuar  0.705841394003
IStepnewton] 038276119473

IStepprojecteal  0.38376110473

Figure 11.11 A plot with similar input as the Figure shown in Figure 11.10 but using alogarithmic grid.

11.1.9. Solver Report

The diagnostic tool generate_nl e_sol ver _report gives a brief summary of different properties of a given
problem such as max, min, nominal values, convergence information, variable names, non-zero residuals and
more. The amount of information to display is controlled through the keyword mode. The diagnostic tool will
also display information about occured errors and warnings if the FMU is loaded with a minimium log level
"error”. For a given instance of oct . st eadyst at e. nl esol . Probl em denoted by pr obl em and an instance of
oct . st eadyst at e. nl esol . LogVi ewer denoted by I v, the diagnostics is displayed by writing:

from oct . st eadyst at e. di agnosti cs.nl e_sol ver _report inmport generate_nle_sol ver_report
generate_nl e_sol ver_report (lv, problem npde="convergence")

Theresults are shown in Figure 11.12, note that node="al | " isthe default option.
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Solver Report

Iteration variables convergence information

Index Start End IV scaled Residual MName
0 0.00000e+00 7.07107e-01 nan -2.91308=-04 ¥
1 1.50000=+00 1.870752+00 nan -2.91767e-04 X

MNon-zero residuals

Residual values

Unscaled Scaled Index Description
-0.000291766548438  -4,16844146594e-05 1k x™2+y™2=4 annotation(__Modelon(ResidualEqu
Affecting IVs Value Index MName
1.8707507751 1 x
0.707106619194 0y
-0.0002913083617  -4.161809542327e-05 0 ® x™2-y™2=3 annotation{__Medelon(ResidualEqu
Affecting IVs Value Index MName
1.8707507731 1 x
0.707106619194 0 ¥

Figure 11.12 HTML output from diagnostic tool generate_nle_solver_report Wwhen using
node="conver gence".
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Chapter 12. FMU Aggregation
Interface for MATLAB®

12.1. Introduction

The primary goal of the FMU aggregation framework is to enable coupled simulation of steady state models rep-
resented as interactive FM Us within the Non-linear equation solver MATLAB® interface framework (see Chap-
ter 9). This is achieved by providing a package that contains an external APl to a set of connected FMUs that
mimics the FMI Toolbox for MATLAB® mex-interfaces for asingle FMU.

The FMU aggregation support covers:

Functionalities necessary to combine a number of FMUs under a single class interface including variable name
and value references mangling as well as data routing from the aggregate to individual FMUs and back.

Support for top-level variables that are aliased to one or several variables of the coupled FMUs.
Automatic identification of the FMU execution order in the coupled model.

Support for the debug logging when running simulation with aggregate model.

Current version of the framework has following limitations:

There is no support for aggregation of dynamics models. In particular ODE state variables and derivatives as
well as potential dependencies between them are not supported.

Only FMI 1.0 Model exchange FMUs are supported.

The framework does not support “real” algebraic loops over FMUs (see FMI 2.0 specification Section 3.1 for
the definition). Artificial algebraic loops are fully supported.

Coupling of discrete signals (integer and Boolean) is supported but not recommended between FMUs due to
limited support in FMI 1.0 specification.

Top level variables are only supported for inputs and outputs of the aggregated FM Us.

12.2. The MATLAB® interface

FMU aggregation is supported by the oct . cosi mul at i on package. The package consists of a humber of public
classes and functions, as well as a few internal classes and scripts used by the data propagation infrastructure.
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The main class is Coupl edFMUMbdel MEL, which has been implemented to mimic the public interface of FMUMbd-
el ME1 class from the FMI Toolbox for Matlab (FMIT). Separate versions of the auxiliary classes vari abl eLi st
and Scal ar Vari abl el are also provided as Coupl edScal ar Vari abl el and Coupl edVari abl eLi st . By retaining
the public interfaces these classes are directly usable with other classes in OCT, e.g., FMJPr obl em Sol ver and
LogVi ewer . The classes should also enable easy transition of all the scriptsutilizing FMIT mex interfacesto access
steady state models from single FMU to an aggregated model.

Below a short overview of the package is given. For details please consult the interactive help in Matlab using
the hel p and doc commands

Coupl edFMUMbdel MEL provides an APl to access an aggregated model composed of several coupled FMUs. To
setup an aggregated model one needs to supply information about FMUs and connections between them. Specifi-
cation of connectionsisdone at scalar signal level where output of an FMU is connected to one or several inputson
other FMUs. Such flat connection specification may be very long for alarge model. In such cases utility function
cr eat eFMJConnect i onvap may be utilized.

Thecr eat eFMUConnect i onMap function generatesaflat connection map based on supplied rulesand actual signals
available on the FMUs. There are two ways to instruct the algorithm: either look for input-output pairs according
to a predefined pattern, or supply the pattern.

The top-level variables are the ones associated with the aggregated model as a whole and not individual FMUs.
In essence, the top-level variables are aliases that may point to one or more actual input variables on one or sever-
a FMUSs, or to an output variable. Top-level variables are generated through the cr eat eTopLevel Defi niti ons
function .

An alternative to explicitly calling Coupl edFMUMbdel MEL constructor isto utilize | oadCoupl edFMU function. The
function mirrors | oadFMY, but takes the same arguments as the Coupl edFMUMbdel MEL constructor. The function
returns a Coupl edFMUMbdel MEL instance on which f i | nst ant i at eMbdel has been called.

FMU aggregation requires special handling when addressing variables using variable names and val ue references.
Each contained FMU receives an unique instance name. Variables within FMUs are then addressed by prepending
their name with the FMU instance name, i.e., FMJI nst anceNane. var i abl eName.

For value references the problem is solved by encoding additional information about FM U instances together with
the variable reference within aspecific FMU. A few extra public methods are added to work with thisintermediate
level, €.0., get FMJI nst anceNane, get FMJ, get FMUJI d, t r ans| at eCoupl edNane, t r ans| at eCoupl edVar i abl eRef

andtrans| at eRef ToCoupl ed. Itispossibleto usetheseto addressindividual FMUswithin Coupl edFMUMbdel MEL.
The recommended and more convenient usage is through the auxiliary class Coupl edVari abl eLi st that handles
underlying conversion automatically.

Coupl edScal ar Vari abl el replaces Scal ar Vari abl el classfrom FMIT when working with the aggregated mod-
€l. Instances of this class are returned from a number of functions, most notably get Model Vari abl es. The class
provides access to al the scalar variable attributes as defined in FMI specification, except for the di r ect Depen-

dency, which is not supported.
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Coupl edVari abl eLi st replaces vari abl eLi st , and supports both variables from the different sub-models and
top level variables.

12.3. Examples

12.3.1. Simple example for predefined connection map algorithm

Below an example is presented where the connection graph is generated based on the default mapping algorithm.
See interactive help on cr eat eFMUConnect i onMap for more details.

% Load FMJs and create units argunent

frmuA = | oadFMJ(' f nUAFi | eNanme', ' LOGNAME' , 'A');

fmuB = | oadFMJ(' f ruBFi | eNane', 'LOGNAME , 'B');

units = {{fmuA "'A}, {fmuB, 'B'}};

% Create connection map according to predefined pattern
connect i onMap2FMJs = cr eat eFMJConnecti onMap(units, 'fnmu2fmuBuses');
% Creat e Coupl edFMU.

Coupl edFMJ = Coupl edFMUMbdel MEL(units, connecti onMap2FMJs) ;

% Const ruct FMJProbl em Sol ver and sol ve the non-linear system
f muPr obl em = oct . nl esol . FMJPr obl en{ coupl edFMJ) ;

sol ver = oct.nl esol . Sol ver (f muPr obl en) ;

sol ution = sol ver.solve();

12.3.2. Simple example for user supplied rules for connection
map algorithm

Below an exampleis presented where the rules for generating the connection graph are altered by providing buses
argument.

% Load FMJ and set up units

fmuA = | oadFMJ(' f nuAFi | eNanme', ' LOGNAME , 'A');

frmuB = | oadFMJ(' f nuBFi | eNane', ' LOGNAME , 'B');

units = {{fnuA, 'A}, {frmuB, 'B'}};

% Set up buses

buses = {{'A", 'B', 'Aouts', 'B.ins'}};

% The connection graph algorithmw Il now | ook for

% out puts nanmed according to the pattern 'A outs. RESTOFNAME
% on A and connect themto input variables naned according
%to the pattern 'B_i ns. RESTOFNAME' on B.

connect i onMap2FMJs = cr eat eFMJConnect i onMap(units, 'causal Buses', buses);
% Cr eat e Coupl edFMU.

Coupl edFMJ = Coupl edFMUVbdel ME1(uni ts, connecti onMap2FMJs) ;

% Const ruct FMJProbl em Sol ver and sol ve the non-linear system

f muPr obl em = oct . nl esol . FMJPr obl en{ coupl edFMJ) ;

sol ver = oct. nl esol . Sol ver (f muProbl em ;

sol ution = sol ver.solve();
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12.3.3. Complete example including models

The Modelica models used in the example

within ;
package Test Unpaired

connector Real Signal = Real;

nodel Splitter
Real Si gnal x;
paraneter Real k = 1.0;
paraneter Real factor_guess = 0.5;
Real factor(min =0, max = 1, start = factor_guess)
annot ati on(__Model on(lterati onVari abl e(enabl ed = true)));
Real Signal x1 = factor * k * x;
Real Signal x2 = (1-factor) * k* x;
end Splitter;

nodel M xer
Real Si gnal x1;
Real Si gnal x2;
Real Si gnal vy;
equati on
0 = x1 - x2 annotation(__Mddel on(Resi dual Equati on, nanme=dx));
y = x1;
end M xer;

nodel SplitterSeparate
i nput Real Signal x(start = 1.0);
out put Real Si gnal x1;
out put Real Si gnal x2;
Splitter splitter;

i nput Real extralV,
equati on

x1 = extral V annot ati on(__Model on( Resi dual Equati on, nane=extrabDV));
connect (x, splitter.x);

connect (splitter.x1, x1);

connect (splitter.x2, x2);

end SplitterSeparate;

nodel M xer Separ at e
out put Real Si gnal x1;

i nput Real Si gnal x2;
out put Real Si gnal vy;
M xer m xer;
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Real extralV annotation(__Mdel on(lterationVariable));
equati on

x1 = extralV;

connect (x1, m xer.x1);

connect (x2, m xer.x2);

connect (y, m xer.y);
end M xer Separ at e;

nodel Si npl eConposi t
i nput Real Signal x( start = 1.0);
out put Real Si gnal vy;
Splitter splitter;
M xer m xer;

equati on
connect (x, splitter.x);
connect (splitter.x1, m xer.x1);
connect (splitter.x2, mxer.x2);
connect (y, m xer.y);

end Si npl eConposit;

nodel SplitterSeparate
i nput Real Signal x(start = 1.0);
out put Real Si gnal x1;
out put Real Si gnal x2;
Splitter splitter;

i nput Real extralV;
equati on

x1 = extral V annot ati on(__Mbdel on( Resi dual Equat i on, nane=extrabDV));
connect (x, splitter.x);

connect (splitter.x1, x1);

connect (splitter.x2, x2);

end SplitterSeparate;

annot ati on (uses(Modelica(version="3.2.1")));
end Test Unpai red;

Code that compiles the partitioned models and compares solution results from a monolithic model

splitterMdel = 'TestUnpaired. SplitterSeparate';
m xer Model = ' Test Unpaired. M xer Separ ate';
conbi nedMbdel = ' Test Unpai red. Si npl eConposit';

conpiler = 'OCT_Mdelica';

lib = {[testdir, '\TestUnpaired.m']};

opt = {"interactive_fmu', true,'expose_scal ar_equation_bl ocks_in_interactive_fnu',
true,
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' hand_gui ded_tearing', true, 'nmerge_blt_blocks', true};
splitterFN = oct. nodel i ca. conpi | eFMJ)(splitterMbdel, conpiler, 'nodel Path',
"options', opt);
m xer FN = oct . nodel i ca. conpi | eFMJ( m xer Model , conpi |l er, 'nodel Path', Iib,
'options', opt);
conbi nedFN = oct . nodel i ca. conpi | eFMJ( conbi nedMbdel , conpi |l er, ' nodel Path',
'options', opt);

conbi nedFmu = | oadFMJ( conbi nedFN) ;

conbi nedP = oct . nl esol . FMJPr obl em( conbi nedFnu) ;
conbi nedS = oct. nl esol . Sol ver (conbi nedP) ;

sol = conbi nedS. sol ve;

m xer Fu = | oadFMJ( m xer FN) ;
splitterFmu = | oadFMJ(splitterFN);
% Set up Coupl edFMUVbdel ME1 wi th a manual created connecti on nmap.
coupl edFmu = oct. cosi mul ati on. Coupl edFMIUModel MEL(. . .
{ {splitterFmu, 's',}, {mxerFonu, 'm} }, ...
{"s'", 'm, "x2', "'x2'; 'm,'s", 'x1', 'extralV}
)i
coupl edP = oct. nl esol . FMJPr obl enm( coupl edFnu) ;
coupl edS = oct. nl esol . Sol ver (coupl edP) ;
sol 1 = coupl edS. sol ve;
factor = coupl edFnu. get Val ue('s.splitter.factor');
relativeDiff = (sol - factor)./((abs(sol + factor) + le-16)/2);

if (all(abs(relativeDiff) < le-6))
di sp(' Success');

el se
disp(' Failure');

end

l'ib,

l'ib,
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Chapter 13. Graphical User Interface
for Visualization of Results

13.1. Plot GUI

OCT comeswith agraphical user interface (GUI) for displaying simulation and / or optimization results. The GUI
supports result files generated by OCT and Dymola (both binary and textual formats).

The GUI islocated in the module ( pyj mi / pyf ni ). common. pl otti ng. pl ot _gui and can be started by Windows
users by selecting the shortcut located in the start-menu under OCT. The GUI can also be started by typing the
following commands in a Python shell:

from pyfm .comon. plotting inport plot_gui # or pyfm .comon.plotting inport plot_gui
pl ot _gui.start GU ()

Note that the GUI requires the Python package wxPython which is installed by default in the Python version that
comes with OCT.

# | IModelica.org Plot GUI ‘ = | B ||

File Edit View Help

Plot1 ¢

28
2.6 |
24
22

2.0 I

Filter 18
7] Parameters | Constants I

V| Time-Varying =50 0 50 100

Figure 13.1 Overview of OCT Plot GUI

13.1.1. Introduction

An overview of the GUI is shown in Figure 13.1. As can be seen, the plot figures are located to the right and
can contain multiple figures in various configurations. The left is dedicated to show the loaded result file(s) and
corresponding variables together with options for filtering time-varying variables and parameters/constants.
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Loading aresult file is done using the Fi | e menu selection open which opens a file dialog where either textual
(-txt) results or binary (.mat) results can be chosen. The result is then loaded into a tree structure which enables
the user to easily browse between components in a model, see Figure 13.2 . Multiple results can be loaded either
simultaneously or separately by using the Fi | e menu option pen repeatedly.

1 IModelica.org Plot GL_ - C="roT X

File Edit View Help

(=) CombinedCyde_Optimization_Simulators_C || Plot1
firstOrder
- load_S
[ pi 1.0
[T height
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[7] time 0.4 |

0.6

] m [ 0.2
Filter

Parameters | Constants l

0.
Time-Varying % 0 0.2 0.4 0.6 0.8 1.0
Time [s]

Figure 13.2 A result file has been loaded.

Displaying trajectoriesis done by simply checking the box associated with the variable of interest, see Figure 13.3.
Removing atrgjectory follows the same principle.

i Modeliceorg Fiot CULNIE. 0 C=T"e

File Edit View Help

[=-CombinedCyde_Optimization_Simulator #| || Plot1 3
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- load_S
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[ time
0.98
4| 1 r
0.96
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Parameters | Constants l
0.9
Time-Varying ?}.O 0.2 0.4 0.6 0.8 1.0

Time [s]

Figure 13.3 Plotting a trajectory.
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A result can also be removed from the tree view by selecting an item in the tree and by pressing the delete key.

13.1.2. Edit Options

The GUI alowsarange of options, see Figure 13.4, related to how the trajectories are displayed such asline width,
color and draw style. Information about aplot can in addition be defined by setting titles and labels. Optionsrelated
to the figure can be found under the Edi t menu as well as adding more plot figures.

' Modelica.crg P\otGU' - = X
File View Help

& Add Plot tor = || Plot1 x
q
q Ayis [ Labels
Lines / Legends 1.06

[7] duration — Icad_S ¥

[T offset 1.04
[ startTime

Bk

Dk 102
D activation_1

D activation_2

m

¥ 1.00
plant
[ time
0.98
« i b
0.96
Filter
Parameters | Constants |
0.9
Time-Varying %.O 0.2 0.4 0.6 0.8 1.0

Time [s]

Figure 13.4 Figure Options.

Under Axi s/ Label s, see Figure 13.5, options such as defining titles and labels in both X and Y direction can be
found together with axis options.
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Figure 13.5 Figure Axis and Labels Options.

Under Li nes/ Legends, options for specifying specific line labels and line styles can be found, see Figure 13.6.
The top drop-down list contains all variables related to the highlighted figure and the following input fields down
to Legend are related to the chosen variable. The changes take effect after the button ok has been pressed. For
changing multiple lines in the same session, the Appl y button should be used.

#7 JModelica.org P\Utm - - [ o e
File Edit Wiew Help
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] 096 o=
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Figure 13.6 Figure Lines and Legends options.

Additional figures can be added from the Add Pl ot command in the Edi t menu. In Figure 13.7 an additional
figure have been added.
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Figure 13.7 An additional plot has been added.

Thefigures can be positioned by choosing afigure tab and moving it to one of the borders of the GUI. In Figure 13.8
"Plot 1" have been dragged to the left side of the figure and a highlighted area has emerged which shows where
"Plot 1" will be positioned. In Figure 13.9 the result is shown.
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Figure 13.8 Moving Plot Figure.
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Figure 13.9 GUI after moving the plot window.

If we are to add more figures, an increasingly complex figure layout can be created as is shown in Figure 13.10
where figures also have been dragged to other figure headers.
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Figure 13.10 Complex Figure Layout.
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13.1.3. View Options

Options for interacting with a figure and changing the display can be found under the vi ew menu. The options
are to show/hide a grid, either to use the mouse to move the plot or to use the mouse for zooming and finally to
resize the plot to fit the selected variables.
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Figure 13.11 Figure View Options.

Moving afigure with the nove optionis performed by simply pressing the left mouse button and while still holding
down the button, dragging the plot to the area of interest. A zoom operation is performed in asimilar fashion.

13.1.4. Example

Figure 13.12 shows an example of how the GUI can be used to plot four different plots with different 1abels. Some
of the lines have also been modified in width and in line style. A grid is also shown.
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Figure 13.12 Multiple figure example.
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Chapter 14. Steady-state Modelica
Modeling with Hand Guided Tearing

In the Optimica Compiler Toolkit there are extensions to the Modelica language which gives the possibilities to
utilize hand guided tearing. With hand guided tearing the user can specify certain variables and equations which
should be chosen as iteration variables and residuals respectively. Normally this choice is made automatically by
the compiler. In this chapter the syntax and the method will be explained.

14.1. Specification of Hand Guided Tearing

There are two ways to use hand guided tearing in OCT:
» Aspairing where an equation is bound to a variable

» Asunpaired variables and equations where pairs are bound by the compiler

14.1.1. Identification of Equations
In some situations, it is necessary to identify an equation so that it can be referenced.

Syntax
It is possible to place annotations for equation name in the annotation block for the equation.

"annot ati on" " ("
" __Model on" " ("
"hame" "=" | DENT

")
"y

Example

x =y + 1 annotation(__Mdel on( nane=res));

14.1.2. Paired Tearing

In some situations it is crucial that an equation and a variable form atearing pair. Thisis where the hand guided
tearing pair annotations comes into play. It allows the user to specify exactly which tearing pairs to form. The
tearing pairsthat are specified are torn before any automatic tearing comesinto play. The pairs are also torn without
any regard for solvability of the system. This means that if the user specifies to many pairs, they will all be used
and the torn block becomes unnecessarily complex. If the final system is unsolvable after all pairs are torn, the
automatic algorithm will kick in and finalize the tearing.
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There are two ways to specify hand guided tearing pairs.
*  On component level

e On system level
14.1.2.1. Specify Tearing Pairs on Component Level

Tearing pairs can be specified in the annotation for the equation that should become residual equation. This type
of hand guided tearing is limited to the name scope that is visible from the equation. In other words, the equation
has to be able to "see" the variable that should be used as iteration variable.

Syntax

Itis possibleto place annotations for tearing pairsin the annotation block for the residual equation. The syntax for
tearing pair on component level has the following syntax:

"annot ati on" " ("
'__Model on" " ("
Resi dual Equat i on

"y
"y

Where Resi dual Equat i on is defined by the following record declaration:

record Resi dual Equati on
par anet er Bool ean enabl ed = true;
paraneter |nteger |evel (mn=1) = 1;
Real nominal = 1;
IterationVariable iterationVariable;
par anet er Bool ean hold = fal se;

end Resi dual Equat i on;

Wherelterationvari abl e isdefined by the following record declaration:

record IterationVariabl e
paraneter Real nanme; // Accessed w t hout dot-notation
Real nmax;
Real m n;
Real nomi nal ;
Real start;
par anet er Bool ean hold = fal se;
end lterationVari abl e;

Example

nodel A
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par anet er Bool ean subSystenilHol d = true;
Real z;
Real q;

equati on

X =y + 1 annotation(__Mdel on(Resi dual Equati on(iterationVariabl e=z)));

X + q annotation(__Mdel on(Resi dual Equat i on(
iterationVari abl e(
start = 1,
nom nal = 10,
hol d = subSyst emlHol d
) = q,
nom nal = 100,
hol d = subSyst enllHol d,
)

p

end A
14.1.2.2. Specify Tearing Pairs on System Level

Tearing pairson system level are necessary when the residual equation and iteration variable arelocated in different
name scopes. In other words, the equation can not "see" the iteration variable.

Before it is possible to specify tearing pairs on system level it is necessary to define away to identify equations.
Syntax

It ispossibleto place annotations for tearing pairs on system level in the annotation block for the class decel eration.

"annot ati on" "("
' __Mbdel on" " ("
"tearingPairs" "(" Pair* ")"
ny

"y
Where Pai r isdefined by the following record declaration:
record Pair

par anet er Bool ean enabl ed = true;

paraneter |nteger |evel (mn=1) = 1;

Resi dual Equat i on resi dual Equat i on;

IterationVariable iterationVariable;
end Pair;

Where Residual Equation is defined by the following record declaration:

record Residual Equati on
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paranet er Equati on nane; // Accessed without dot-notation
Real nomi nal = 1;
par anet er Bool ean hold = fal se;

end Resi dual Equati on;

Where IterationVariable is equal to the record declaration with the same name in section Section 14.1.2.1:
Example

Here follows an example where the equation is identified by a name tag and then paired with a variable.

nodel A
nodel B

x =y + 1 annotation(__Mdel on( nane=res));
p = x + q annotati on(__Mdel on( name=res2));
end B;
nodel C
Real z;
Real q;
end C
par anet er Bool ean subSysten?Hold = true;
B b;
C c;

annot at i on(__Model on(t eari ngPai rs(Pair(residual Equati on=b.res,iterationVariable=c.z))));

annot at i on(__Model on(teari ngPai rs(Pair(
resi dual Equat i on(

nom nal = 10,

hol d = subSyst enRHol d
) = b.res2,
iterationVari abl e(

start = 2,

hol d = subSyst enRHol d
) =c.q

1))
end A

14.1.3. Unpaired Tearing

It is also possible to specify that an equation or variable should be used in tearing without pairing. Thisis useful
when there is no requirement that a certain equation is bound to a specific variable. The pairing isinstead done by
the compiler during compilation. An error is given If the number of unpaired equations is unequal to the number
of unpaired variables.
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14.1.3.1. Specify an Equation as Unpaired Residual Equation

By marking an equation as unpaired residua equation it will be paired to an unpaired iteration variable during
tearing.

Syntax

It is possible to place annotations for residua equations in the annotation block for an equation. The syntax for
residual equation annotation has the following syntax:

"annot ati on" "("
"__Model on" " ("
Resi dual Equat i on

ny
"y

WhereResi dual Equat i on isequal to that of component level pairs (see section Section 14.1.2.1) with one excep-
tion; thei terati onvari abl e field isleft unspecified.

Example

x =y + 1 annotation(__Mdel on(Resi dual Equati on));

14.1.3.2. Specify a Variable as Unpaired Iteration Variable

By marking avariable asunpaired iteration variableit will be paired to an unpaired residual equation during tearing.
Syntax

It ispossibleto place annotationsfor unpaired iteration variable in the annotation block for avariable. Theiteration
variable annotation has the following syntax:

"annot ati on" "("
" Nbdel on" " ("
IterationVariabl e
ny

"y
Wherelterationvari abl e isdefined by the following record declaration:

record IterationVariabl e
par anet er Bool ean enabl ed = true;
paraneter Integer |level (mn=1) = 1;
Real nax;
Real m n;
Real noni nal ;
Real start;
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par anet er Bool ean hold = fal se;
end IterationVariabl e;

Example

Real x annotation(__Mdelon(lterati onVariable));

14.2. Nested Hand Guided Tearing

The record definitions Resi dual Equat i on and | t erati onVari abl e in section Section 14.1 have the field decla-
ration | evel . Thisfield specifies on which level the equation or variable should be torn. Equations and variables
with the same level will be torn into the same torn block. It is possible to have nested torn blocks by specifying
different levels for different equations and variables.

14.3. Hand Guided Tearing Attributes

The record definitions Resi dual Equati on and I t erati onVari abl e in section Section 14.1 have the field decla-
rations max, ni n, start and nom nal . These fields are optional. If left unspecified, the value is retrieved from the
corresponding attributes in the variable declaration specified by the nane field. It is possible to use continuous
variables in the expressions for the fields max, ni n, noni nal , st art and equation nomi nal with two restrictions;
the variable must be solved before the computation of the equation block start and the block must be torn on HGT
| evel two or greater.

14.4. Extended Example
14.4.1. NHGT with fixed bounds

Consider the following two-dimensional nonlinear algebraic test problem. It depends on two unknowns x1 and x2.
Thefirst residual equationis

G Crsd R
B r+0.1 r+2

It involves a sub-expression r.

[

_x1® x
'=100*1

[u=N
o
(=)

The second residual equation is

O=sin(a+b)
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Again, sub-expressions are used.

2 . 1
a= % b=sm(X7)

The shape of the residuals is as follows (the first residual is blue, the second green, and black lines illustrate the
intersection with the zero plane). Note how the blue residual is non-convex. This means that a gradient-based
algorithm will have difficulties to reach the solution inside the “valley” for small x1 values unless the algorithm is
started inside (i.e., the start attributes correspond to an iterate inside the “valley”).

Two dimensional probler: Residuals

The Modelicacode for such amodel can be written as follows. Thismodel isincluded in the ExampleM odels.mo-
package and the script to run this example is example_ NHGT.

nmodel NonConvex

i nport Model i ca. Mat h. *;

i mport Mbdel i ca. Constants. pi ;

Real r;

Real a;

Real b;

Real x1(m n=0, max=20, start=15);

Real x2(m n=-20, max=20, start=15);
equati on

r = x172/100+x272/ 10;

0 = 3*exp(-1/(r+0.21))/(r+0.1)-1/(r+2);

a = pi*x2/ 40;

b = sin(x1/pi);

0 =sin(a + b);
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end NonConvex;

How can we solve such a problem using nested hand-guided tearing, ideally such that the robustnessis high? We
split the problem into two levels. On the inner level (“level 2”), the solver finds the solution x2 to the second
residual based on the current iterate of x1. In other words, the solver iterates are constrained to the following one
dimensional manifold (see the black linein the following illustration).

Level 2 problem is to solve for x2 given current iterate of x1 such that res2==0

To achieve this, we add a nested hand-guided tearing annotation to the residuals equation as described in the
introductory section (see bold text).

nmodel NonConvex
i mport Mbdel i ca. Mat h. *;
i mport Mbdel i ca. Constants. pi ;
Real r;
Real a;
Real b;
Real x1(m n=0, max=20, start=15);
Real x2(m n=-20, max=20, start=15);
on
x172/ 100+x272/ 10;
3*exp(-1/(r+0.1))/(r+0.1)-1/(r+2);
pi *x2/ 40;
sin(x1/pi);
= sin(a + b)
annot ati on(__Model on( Resi dual Equati on(iterationVari abl e=x2, | evel =2)));
end NonConvex;

D
o]
=
o))
=4

oOT ®» O
I L |
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Finally, in the outer “level 1" problem, the solver drives the first residua to zero. This problem can be solved
robustly (i.e., without suffering from the non-convex shape of the residual) using acomputationally efficient algo-
rithm. The algorithm moves along the same one-dimensional manifold highlighted with ablack linein the follow-
ing illustration. Residual 1 is evaluated along this manifold, and a solution is computed.

Level 1 problem is to salve for x1 such that res1==0

This isimplemented via the following additional annotation (again, see the bold text). The model with these an-
notationsis also included in the ExampleM odels.mo-package.

nmodel NonConvexNHGT

i mport Mbdel i ca. vat h. *;

i nport Model i ca. Constants. pi ;

Real r;

Real a;

Real b;

Real x1(m n=0, nmax=20, start=15);

Real x2(m n=-20, max=20, start=15);
equati on

r = x172/100+x2"2/ 10;

0 = 3*exp(-1/(r+0.1))/(r+0.1)-1/(r+2)

annot at i on(__Mddel on( Resi dual Equati on(iterati onVari abl e=x1, | evel =1)));
a = pi *x2/ 40;
b = sin(x1/pi);

0 = sin(a + b)

annot at i on(__Mddel on( Resi dual Equati on(iterati onVari abl e=x2, | evel =2)));

end NonConvexNHGT;
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In the compilation log files we get the following visualization of the problem structure.

Q | © |C>\'< |h X
b = sin(x1/3.141592653589793) 0] X
a=3.141592653589793 * x2/ 40 0|0
0 = sin(a + b) annotation(__Modelon(Residug X | X
r=x1*2/100+x2*2/10 X 0O|X
0=3"exp(-1/(r+0.1))/(r+0.1)-1/(r+2 X

14.4.2. NHGT with adaptive bounds

Additionally to allowing to the modeler to specify in what hierarchy to solve an equation system, Nested Hand
Guided Tearing allowsto adapt Real variabl e attributes such as the start value. Consider the following two dimen-
sional problem. The residual equations are

0=exp(-exp(K) +k+1) -03exp(-exp(1) +1+1)-0.50 =s+x1x 25 -1
The equation system involves three further equations (and unknowns k, 1, s), which we will ask the compiler to
solvefor as needed to expressthe problem in terms of two residuals. The variablef isaproblem-specific parameter.

i 2-
0=k X2 oo XL

X2 X

0
Substituting the three equations as required into the two residual equations, we are able to visualize the problem as
follows (again, the blue surface is the first and the green surface the second residual). Note how the blue residual
admits two one-dimensional manifolds to satisfy it.
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Two dimensional problem: Residuals

Without Hand Guided Tearing we formulate this problem in Modelica as follows.

nmodel Test
paraneter Real f = 10;
Real x1(m n=0, nmax=20, start=15);
Real x2(m n=0, max=20, start=15);
Real k;
Real |;
Real s;
equati on
0 = k +(x1-9)/(-2);
| +(x2-f)/(-2);
2/ 40 + x1/20 - s;
* exp(-exp(k)+k+1.0) - 0.3 * exp(-exp(l)+l +1.0) - 0.5;

0
0
0
0 + x1*x2/ 1672 - 1,
d

(n(/)l—‘><

—| mwm mn

en

Assume that, based on an understanding of the problem (usually given the physics-based characteristics of it), we
are able to infer that solving residual two in a nested fashion is particularly beneficial for robustness or computa-
tional efficiency. The “level 2" problem shall be to solve residual two for x2 given the current iterate of x1. In the
following illustration, the one-dimensional manifold is shown as a black line.
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Level 2 problem is to solve for x2 given current iterate of x1 such that res2==0

The “level 1" problem is now to vary variable x1 until the problem is solved. Again, the algorithm moves along
the same one-dimensional manifold highlighted with a black linein the following residua 1 illustration.

Lewel 1 problern is to soke for 31 such that res1==0
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These two different levels can be implemented with the following annotations (see text in bold font).

nodel Test
paraneter Real f = 10;
Real x1(m n=0, max=20, start=15);
Real x2(m n=0, max=20, start=15);
Real k;
Real |;
Real s;
equati on
0 = k +(x1-9)/(-2);
I +(x2-f)/(-2);
x2/ 40 + x1/20 - s;
1 * exp(-exp(k)+k+1.0) - 0.3 * exp(-exp(l)+l+1.0) - 0.5
annot at i on(__Mddel on( Resi dual Equati on(iterati onVari abl e=x1, | evel =1)));
0 = s + x1*x2/1672 - 1
annot at i on(___Mddel on( Resi dual Equati on(iterati onVari abl e=x2, | evel =2)));
end Test;

0
0
0

This problem does however exhibit two different solutions. In engineering, one of the multiple solutionsis usually
superior if compared to the others. In some cases, the solutions differ in efficiency or a similar metric, in others
some of the solutions may even be mathematical artifacts that are not physically possible (because they violate
fundamental laws such as the Second Law of Thermodynamics). We assume that a condition can be written to
express such a condition, and, based on its value, the attributes of the real iteration variables is adapted.

In this simple example we assume that any solution with x1+x2> 20 can be excluded based on physical insight.
Wetherefore introduce an adaptive bound on the “level 2" problem by setting the lower bound to x2, max = 20-x1.
Thisconditionisillustrated below with the grey transparent surface; all pointsfacing the reader “ before the surface”
arevalid.
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Level 1 problem is to salve for x1 such that res1==0

These adaptive bounds are implemented as follows.

nmodel Test
paraneter Real f = 10;
Real x1(m n=0, nmax=20, start=15);
Real x2(m n=0, max=20, start=15);
Real k;
Real |;
Real s;
equati on
0 = k +(x1-9)/(-2);
| +(x2-f)/(-2);
x2/ 40 + x1/20 - s;
1 * exp(-exp(k)+k+1.0) - 0.3 * exp(-exp(l)+l +1.0) - 0.5
annot at i on(__Mdel on( Resi dual Equat i on(i terationVari abl e=x1, | evel =1)));
0 = s + x1*x2/16”2 - 1
annot at i on(__Mdel on( Resi dual Equati on(i terationVari abl e( max=20-x1) =x2, | evel =2)));
end Test;

0
0
0

The compilation log again contains a visualization of the equation structure with the BLT table.
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ol |.]s
0=x2/40+x1/20-s 00| §)
0=s+x1*x2/256.0 - 1 annotation(__Maode C-lC- (o]
0=1+(@x2-f)/-2 X 0
O=k+(x1-9)/-2 O|X
0 = exp(- exp(k) + k + 1.0} - 0.3 * exp(- exp(l) X X

183



Chapter 15. Modelica Smoothness
Check

Smoothness check introduces a set of checking modes which detects non-smooth Modelica constructs. Some ex-
amples of relevant checking modes:

» Steady-state models with discrete switches. Model equations are c1, explicitly modeled discrete elements are
allowed. Allowed elements:

1. Equations with discrete constructs such asif expressions

2. Relation expressions generating events

3. Algorithmic functions with snoot hOr der annotation with or der >=1

Some elements that would not be allowed in this mode are:

1. Non-C1 operators which do not generate events such as i n, max or abs functions
2. When clauses in equations and algorithms

3. Boolean and integer variables

 Steady-state models without discrete switches. Model equations are C1 without discrete elements. Forbidden
elements:

1. Equations with discrete constructs such asif expressionsif they are not in smoot h( 1, . . ) operators
2. Relation expressions generating events

3. Algorithmic functions with snoot hOr der annotation with or der <1

4. Non-C1 operators which do not generate events such asni n, max or abs functions

5. When clauses in equations and algorithms

6. Boolean and integer variables

* Optimization models cn, n>=1 models without events. In most cases for optimization n>=2 to fulfill the re-
quirements of the numerical algorithms. Allowed elements:

1. Equations with sufficient smooth order n. Relational expressions are allowed inside noEvent and smooth
(with sufficiently high level of smoothness) operators
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2. Algorithmic functions with snoot hOr der annotation with or der >=n Some elements that would not be al-
lowed in this mode are:

3. Non- Cn, n>=1 functions which do not generate events such asmi n, max or abs functions

4. When clausesin equations and algorithms

5. Boolean and integer variables

6. Relation expressions outside of noEvent and snmoot h (with smooth order not sufficiently high) operators
All of these use cases can be covered by combining and settings the options described in this chapter.
The check is done during normal error checking of the model which means that no variability propagation or other

model transformation has been performed. So for example, some variables or expressions that later will be found
to be of constant or parameter variability will be reported as discontinuous.

15.1. Options Flags

There are several compiler option flags that control which language constructs that should be allowed.

al | ow_di screte_vari abl es
Boolean option that controls whether discrete variables such as Integers, Booleans, Strings or Enumerations
should be allowed in the model. This option is true by default.

al | ow_when_cl auses
Boolean option that controls whether when clauses should be allowed in the model. This option is true by
default.

al | ow_di screte_sw tches
Boolean option that controls whether discrete switches should be alowed in the model. This option is true
by default.

system continuity_order
Reguire the system to be at least n times continuous differentiable where n is an integer given by this option.
Default valueis -1 which means that discontinuations are allowed.

snmoot hness_check_as_war ni ngs
Boolean option that control swhether smoothness check problems should be given aswarning instead of errors.
This option is false by default which means that problems are given as errors.
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15.2. Annotations

In addition to the options, smoothness check also introduces a set of annotations for handling special use cases
which aren't covered by the language specification.

15.2.1. Function smooth order

The smooth order annotation that is defined by the language specification only allow literal integer expressions.
However there are situations where the smoothness order of the function depends on the input arguments. This
OCT specific smooth order annotation addresses thisissue.

"annot ati on" "("
" Nbdel on" " ("
"smoot hOrder” "=" EXP
ny

"y

Theinteger typed expression EXP may contain an arbitrary expression that refer input variable or package constants
whit the restriction that the referenced variables must have known value at compile time. I.e., when referring an
input variable, the corresponding function call argument must be of constant variability. If both the smooth order
annotation as defined in language specification and the OCT specific smooth order annotation is supplied, then
the maximum value of the two will be used.

15.2.1.1. Example 1

This example illustrates usage of the smoot hOr der annotation where the model passes the smoothness check.

nodel A
function F
i nput Real x;

i nput | nteger snoot h;
out put Real vy;
al gorithm
y 1= X;
annot at i on(__Model on(snoot hOr der =snoot h) ) ;
end F;
constant |nteger snmooth = 1;
Real r = F(tinme, smooth);
end A;

15.2.1.2. Example 2

Thisexampleillustrates usage of the snoot hOr der annotation where the smoothness check will give an error. The
variability of the function call argument that corresponds to the referenced function input is too high.

nodel A
function F
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i nput Real x;
i nput | nteger snooth;
out put Real vy;
al gorithm
y 1= X
annot at i on(__Model on( snpot hOr der =snoot h) ) ;
end F;
paraneter |nteger snmooth = 1;
Real r = F(tine, snooth);
end A;

15.2.2. Design parameters

The need to mark design parameters in Modelica code arises when working with Design of Experiment (DOE),
sensitivity analysis and optimization. The design parameters may affect the continuity of the system and thus needs
to be handled as regular variables during smoothness check.

The OCT specific annotation Desi gnPar anet er , addresses this problem by allowing the user to mark parameters
as design parameters. The annotation syntax is as follows:

"annot ation" "("
"__Model on" " ("
Desi gnPar anet er

ny
"y

Where Desi gnPar anet er is defined by the following record:

record Desi gnPar anet er
par anet er Bool ean enabl ed = true;
end Desi gnPar anet er;

15.2.2.1. Example 1

The following model gives an error when compiled or checked with al | ow_di sct et e_swi t ches Set to false.

nodel A
paraneter Real p annotation(__Mdel on(Desi gnParaneter));
Real r;

equati on
r =if O >pthen tine else -tineg;

end A

Normally thetest in the if-expression wouldn't give an error for expressions referencing parameters. But an error
isgiven in this case since the parameter p is marked as design parameter.
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Chapter 16. The Optimica Language
Extension

In this chapter, the Optimica extension will be presented and informally defined. The Optimica extension in de-
scribed in detail in [Jak2008a], where additional motivations for introducing Optimica can be found. The presen-
tation will be made using the following dynamic optimization problem, based on a double integrator system, as
an example:

mint
o)

subject to the dynamic constraint
x(t)=v(t) , x(t)=0
v(t)=u(t) , v(t)=0

and

v(tr)=0 x(tr)=1
1<u(t)<-1 v(t)<05

In this problem, the final time, tf, isfree, and the objective is thus to minimize the time it takes to transfer the state
of the double integrator from the point (0,0) to (1,0), while respecting bounds on the velocity v(t) and the input
u(t). A Modelicamodel for the double integrator systemis given by:

nodel Doubl el nt egr at or
Real x(start=0);
Real v(start=0);
i nput Real u;

equati on
der (x) =v;
der (v) =u;

end Doubl el nt egrator;

In summary, the Optimica extension consists of the following elements:

* A new specialized class: opt i m zati on

* New attributes for the built-in type Real: free andi ni ti al Guess

* A new function for accessing the value of avariable at a specified time instant

* Class attributes for the specialized classopt i mi zat i on: obj ecti ve, start Time, final Time andstatic
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* A new section: constrai nt

* Inequality constraints

16.1. A new specialized class: optimization

A new specialized class, called opti mi zat i on, in which the proposed Optimica-specific constructs are valid is
supported by Optimica. This approach is consistent with the Modelica language, since there are aready severa
other specialized classes, e.g., record, functi on and nodel . By introducing a new specialized class, it aso be-
comes straightforward to check the validity of aprogram, since the Optimica-specific constructs are only valid in-
sideanopt i ni zat i on class. Theopt i ni zat i on class corresponds to an optimization problem, static or dynamic,
as specified above. Apart from the Optimica-specific constructs, an opt i mi zat i on class can also contain compo-
nent and variable declarations, local classes, and equations.

It is not possible to declare components from opt i mi zat i on classes in the current version of Optimica. Rather,
the underlying assumption is that an opt i ni zat i on class defines an optimization problem, that is solved off-
line. An interesting extension would, however, beto allow for opt i i zat i on classesto be instantiated. With this
extension, it would be possi bl e to sol ve optimi zation problems, on-line, during simulation. A particularly interesting
application of thisfeature is model predictive control, which is a control strategy that involves on-line solution of
optimization problems during execution.

As a starting-point for the formulation of the optimization problem consider the opt i ni zat i on class:

optim zation DI M nTi ne
Doubl el nt egrator di;
input Real u = di.u;
end DI M nTi ne;

This class contains only one component representing the dynamic system model, but will be extended in the fol-
lowing to incorporate al so the other elements of the optimization problem.

16.2. Attributes for the built in class Real

In order to superimpose information on variable declarations, two new attributes are introduced for the built-in type
Real. Firstly, it should be possible to specify that a variable, or parameter, is free in the optimization. Modelica
parameters are normally considered to be fixed after the initialization step, but in the case of optimization, some
parameters may rather be considered to befree. In optimal control formulations, the control inputs should be marked
as free, to indicate that they are indeed optimization variables. For these reasons, a new attribute for the built-in
type Redl, f r ee, of boolean typeisintroduced. By default, this attribute isset tof al se.

Secondly, an attribute, i ni ti al Guess, isintroduced to enable the user to provide an initial guessfor variables and
parameters. In the case of free optimization parameters, the i ni ti al Guess attribute provides an initial guess to
the optimization algorithm for the corresponding parameter. In the case of variables, thei ni ti al Guess attribute
is used to provide the numerical solver with an initial guessfor the entire optimization interval. Thisis particularly
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important if a simultaneous or multiple-shooting algorithm is used, since these algorithms introduce optimization
variables corresponding to the values of variables at discrete points over theinterval. Note that such initial guesses
may be needed both for control and state variables. For such variables, however, the proposed strategy for providing
initial guesses may sometimes be inadequate. In some cases, a better solution is to use simulation datato initialize
the optimization problem. This approach is also supported by the Optimica compiler. In the double integrator
example, the control variable u is a free optimization variable, and accordingly, the f r ee attribute isset to t r ue.
Also, thei ni ti al Guess attributeis set to 0.0.

optim zation DI M nTi nme
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
end DI M nTi ne;

16.3. A Function for accessing instant values of a vari-
able

An important component of some dynamic optimization problems, in particular parameter estimation problems
where measurement dataisavailable, isvariable accessat discretetimeinstants. For example, if ameasurement data
value, y;, has been abtained at timet;, it may be desirable to penalize the deviation between y; and a corresponding
variableinthe model, evaluated at thetimeinstant tj. In Modelica, it isnot possible to accessthe value of avariable
at aparticular time instant in a natural way, and a new construct therefore has to be introduced.

All variablesin Modelicaarefunctions of time. The variability of variables may be different-some are continuously
changing, whereas others can change value only at discrete timeinstants, and yet others are constant. Nevertheless,
the value of a Modelica variable is defined for all time instants within the simulation, or optimization, interval.
The time argument of variables are not written explicitly in Modelica, however. One option for enabling access
to variable values at specified time instants is therefore to associate an implicitly defined function with avariable
declaration. This function can then be invoked by the standard Modelica syntax for function cals, y(t _i). The
name of the function isidentical to the name of the variable, and it has one argument; the time instant at which the
variableisevauated. Thissyntax isalso very natural sinceit corresponds precisely to the mathematical notation of
afunction. Notethat the proposed syntax y(t _i ) makestheinterpretation of such an expression context dependent.
In order for this construct to bevalid in standard Modelica, y must refer to afunction declaration. With the proposed
extension, y may refer either to a function declaration or a variable declaration. A compiler therefore needs to
classify an expression y(t _i ) based on the context, i.e., what function and variable declarations are visible. This
feature of Optimicais used in the constraint section of the double integrator example, and is described below.

16.4. Class attributes

In the optimization formulation above, there are elements that occur only once, i.e., the cost function and the opti-
mization interval. These elements are intrinsic properties of the respective optimization formulations, and should
be specified, once, by the user. In this respect the cost function and optimization interval differ from, for example,
constraints, since the user may specify zero, one or more of the latter.
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In order to encode these elements, class attributes are introduced. A class attribute is an intrinsic element of a
specialized class, and may be modified in a class declaration without the need to explicitly extend from a built-
in class. In the Optimica extension, four class attributes are introduced for the specialized class opt i ni zat i on.
These are obj ect i ve, which defines the cost function, st art Ti me, which defines the start of the optimization
interval, f i nal Ti me, which defines the end of the optimization interval, and st at i ¢, which indicates whether the
class defines a static or dynamic optimization problem. The proposed syntax for class attributes is shown in the
following opt i mi zat i on class:

optim zation DIM nTine (
obj ecti ve=fi nal Ti ne,
start Ti ne=0,
final Tine(free=true,initial Guess=1))
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
end DI M nTi ne;

The default value of the class attribute st at i ¢ isf al se, and accordingly, it does not have to be set in thiscase. In
essence, the keyword ext ends and the reference to the built-in class have been eliminated, and the modification
construct is instead given directly after the name of the class itself. The class attributes may be accessed and
modified in the same way asif they were inherited.

16.5. Constraints

Constraints are similar to equations, and in fact, a path equality constraint is equivalent to a Modelica equation.
But in addition, inequality constraints, aswell as point equality and inequality constraints should be supported. Itis
therefore natural to have a separation between equations and constraints. In Modelica, initial equations, equations,
and algorithms are specified in separate sections, within a class body. A reasonable aternative for specifying
constraintsisthereforeto introduce anew kind of section, const r ai nt . Constraint sectionsare only allowed inside
anoptim zati on class, and may contain equality, inequality as well as point constraints. In the double integrator
example, there are several constraints. Apart from the constraints specifying bounds on the control input u and
the velocity v, there are also terminal constraints. The latter are conveniently expressed using the mechanism for
accessing the value of avariable at a particular time instant; di . x(fi nal Ti me) =1 and di . v(fi nal Ti me) =0. In
addition, bounds may haveto be specified for thef i nal Ti me classattribute. The resulting optimization formulation
may now be written:

optim zation DIMnTine (
obj ecti ve=fi nal Ti ne,
start Ti me=0,
final Time(free=true,initial Guess=1))
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
constrai nt
final Ti ne>=0. 5;
final Ti me<=10;
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di . x(final Ti me)=1;

di . v(final Ti me)=0;

di . v<=0. 5;

di.u>=-1; di.u<=1;
end DI M nTi ne;

The Optimica specification can be translated into executable format and solved by a numerical solver, yielding
theresult seenin Figure 16.1.

1.0

— X

0.8 —uh

O R S : e SRS

08 b

0.2f s L

0'%.0 0.5 1.0 15 2.0 2.5

1.0 e E T ,,,‘,El,

R : ISR RS

R e E—

— 0.5 : . [

N SR o ‘ ; S
0.0 0.5 1.0 15 2.0 2.5

Figure 16.1 Optimization result

192



Chapter 17. The OPTIMICA Compiler
Toolkit API

The OPTIMICA Compiler Toolkit API alows easy use of the compiler's features - compilation of Mbdel i ca

Tostart working withthe AP, refer toits Javadoc, locatedin<I nst al | ati on f ol der >\ doc\ api \ j avadoc. There-
inisan overview of the API's packageswhen openingi ndex. ht m (seeFigure 17.1) Anintroduction to the features
described above isin the package com nodel on. oct . nodel i ca. api inthe class APl .

| Packages
Package Description

The main APl package, contains the core of the API; authentication and protection annotation

com.modelon.oct.modelica.api -
management as well as APl exceptions.
com.modelon.oct.modelica.api.compiler The compiler package contains classes related to compiling Modelica models to FMUs.

com.modelon.oct.modelica.api.compiler.options Funl:tliunalit',-l for compiler options, used via the CompilerOptionsManager and the
RuntimeOptionsManager.

com.modelon.oct.modelica.api.generated Option classes created during build time.

com.modelon.oct.modelica.api.model.equations

com.modelon.oct.modelica.api.modelfilter Contains classes related to filtering of elements in an instance- or source tree.
com.modelon.oct.modelica.api.modelinstance  Describes classes related to the instance tree, with InstanceElement as top-level parent class.
com.modelon.oct.modelica.api.model.prefixes  Classes for describing Modelica prefixes and the identity of Modelica classes and components:
com.modelon.oct.modelica.api.model.source Describes classes related to the source tree, with SourceElement as top-level parent class.
com.modelon.oct.modelica.api.model.types The type package contains classes representing the built-in types in Modelica, used in Expressions.

This package contains classes representing Problems, thatis, issues with the source code detected
during compilation.

Figure 17.1 The packagesin the OCT API, as seen from its Javadoc.

org.jmodelica.api.problemHandling

17.1. Using the API from the command line

Java programs that use the API can be compiled and run from the command line in a two-step process. The pro-
gram isfirst compiled using j avac and then executed using j ava. Make sure that the directory containing these
programsislisted in the system environment variable PATH. Additionally, the process depends on one environment
variable and afew JAR-files. The environment variable JMODELI CA_HOVE pointsto theinstall directory inthe OCT
binary distribution. There are five JAR-files that programs using the APl depend on: Mbdel i caConpi l er. j ar,
separ at eProcess. j ar, Opti ni caConpil er.jar,util.jar andbeaver-rt.jar Theabsolute pathsto the JAR-
files are concatenated with a semicolon to make up the classpath. The classpath also contains the current working
directory, symbolized by the “.” character. It is passed as a parameter to j avac and j ava using the - cl asspat h
switch. A batch script to compile and run a program MyTest . j ava that uses the APl is shown below.

set | ocal
I F NOT DEFI NED JMODELI CA_ HOVE set JMODELI CA HOVE=C: \ OCT- x. x\'i nst al |

193



The OPTIMICA Com-
piler Toolkit API

set " JMODELI CA CP=%J MODELI CA HOVE% | i b\ Model i caConpi | er. j ar; % MODELI CA HOVE% | i b

\ separ at eProcess. j ar; % MODELI CA HOVE% | i b\ Opt i mi caConpi | er. j ar; % MODELI CA HOVE% | i b
\util.jar; %9 MODELI CA_HOVE% Thi r dPar t y\ Beaver\|i b\ beaver-rt.jar;."

javac -cl asspath %JMODELI CA CP% MyTest . j ava

java -cl asspath % MODELI CA CP% My Test

endl ocal

The java program MyTest . j ava is an example of how to use the API to easily retrieve and print all components
of thePI D_Control | er model from the Modelica Standard Library.

import java.nio.file.Path;

i mport com nodel on. oct. nodel i ca. api . APl ;

i mport com nobdel on. oct . nodel i ca. api . APl Excepti on;

i mport com nodel on. oct. nodel i ca. api . nodel . sour ce. Sour ced ass;

i mport com nodel on. oct . nodel i ca. api . nodel . sour ce. Sour ceConponent ;
i mport com nodel on. oct . nodel i ca. api . nodel . sour ce. Sour ceEl enent ;

cl ass MyTest {
public static void main(String[] args) {
APl api = new API(null);
try {
String nmsl = System getenv("JMODELI CA HOVE") + "\\ThirdParty\\MSL\\ MSL400\\ Model i ca";
api . | oadLi brary(Path. of (nsl), true);
Systemout.println("loaded library " + nsl);

Sour ced ass pidController =
api . get Sour ced ass(" Model i ca. Bl ocks. Exanpl es. PID Control l er");
Systemout.println("retrieved nodel " + pidController.getDeclaredNane() + ", contains
the components:");
for (SourceEl ement sourceEl enent : pidController.getEl enent s(Sour ceConponent . cl ass)) {
Systemout.println(" " + sourceEl enent. getDecl aredNanme());
}
} catch (I11egal StateException e) {
e.printStackTrace();
} catch (API Exception e) {
e. printStackTrace();
} finally {
api . t ear DownConpi | er () ;
}
}
}

The output of running MyTest . j ava is shown below.

| oaded library C\OCT-x.x\install\ThirdParty\ MSL\ MSL400\ Model i ca
retrieved nodel PID Controller, contains the conponents:

dri veAngl e

Pl

inertial

torque
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spring
inertia2

ki nemat i cPTP
i nt egrator
speedSensor

| oadTor que

Refer to the javadoc of the APl class for additional usage examples.
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Chapter 18. Source Code FMUs

OCT supports generation of source code FMUs following the FMI 2.0 standard. The functionality supports both
Model Exchange FMUs and Co-Simulation FMUs. Generating a source code FMU is determined by the compiler
option sour ce_code_f nu. The support should be considered experimental.

If the source code FMUSs are to be used in a real-time setting and Co-Simulation FMUs are used, then it is rec-
ommended to switch the default solver from CVode to Explicit Euler or Runge-Kutta (2nd order) by setting the
parameter _cs_sol ver to1 or 2 respectively (if set to o then CVodeisused). Theinternal step-size can be changed
by setting the parameter _cs_st ep_si ze.

Given below is an example for generating a source code FMU for the CoupledClutches model available in the
Modelica Standard Library.

from pynodelica i nport conpile_ fnu

#Model name
nane = "Mbdel i ca. Mechani cs. Rot ati onal . Exanpl es. Coupl edd ut ches"

#Specify option to generate a source code FMJ
options = {"source_code_fnu": True}

# Conpi |l e node
fmu_nane = conpil e_fnu(nanme, target="cs", conpiler_opti ons=options)

18.1. Linear algebra routines

The generated FMUs contains the standard implementation of the linear algebra routines included in Blas and
Lapack. If the target machine has an optimized Blas and Lapack library available, it is benefical to use thisinstead
of the included version for increased performance. To replace the included Blas/Lapack, the filesf 2c. ¢, bl as. ¢
and | apack. ¢ should be removed and the remaining *. ¢ files should be compiled and linked to the optimized
Blas/Lapack library.

18.2. External Code

Many Modelica libraries use external functions or external objects. A source code FMU needs access to all the
source code which includes the source code for these external functions/ objects. When generating a source code
FMU, the compiler detects if the model includes any external functions or objects from any library. If it does,
the compiler tries to find the the source code for these in the path " Li br ar yNane/ Resour ces/ C- Sour ces” and
includes these in the resulting FMU. If there is no source at this location the FMU will not work, there will be a
compilation error when trying to compile the source code due to missing funtions.

196



Source Code FMUs

18.3. Running on dSpace DS1006

The generated source code FMUs have been tested to work on dSpace DS1006 using MATLAB® Simulink and
the FM1 Toolbox to compile the model compatible with DS1006.

The following steps are recommended in order to use an OCT generated source code FMU on DS1006.

1.

8.

Generate a Co-Simulation (FMI12) from OCT by using the compiler option sour ce_code_f mu set to True and
thetarget set tocs.

. Open MATLAB® (with the addon FMI Toolbox installed) and open a new Simulink model.

. Drag the FMI Co-Simulation block from the FMI Toolbox into the model and load the source code FMU into

the block.

. Setthe parameter _cs_sol ver to1 or 2 inthe FMU, which indicates usage of the solver Explicit Euler or Runge-

Kutta (2nd order). If needed - also adapt the specified step-size by changing the parameter _cs_st ep_si ze.

. Still in the configuration window for the FMU block. Go to advanced and set the sample time equal to the

step-size.

. Add outputs and scope to visualize the results.

. In the Simulink model go to configuration of parameters.

a. Set the solver to fixed-step and odel (Euler). Furthermore, set the step-size to the same as was set previously
inthe FMU.

b. Go to code generation and set the system target file to point to the appropriate for DS1006 (rti 1006. t 1 c).

¢. Go to the general build options and in the text box for compiler options input the following line (update
the model name): - DFM 2_FUNCTI ON_PREFI X=<Mbdel Narme>_ - DNO_FI LE_SYSTEM - DNO PI D - DNO Tl ME
-DNO MUTEX -D_SSIZE_T -D__int8_t_defined - DDUMW_FUNCTI ON_USERTAB

d. Goto code generation and build the model.

The model should now compile successfully and be available for use on a dSpace DS1006 machine.

18.3.1. dSpace configuration defines
Compiling on DS1006, the following defines has to be set:

* FM 2_FUNCTI ON_PREFI X=<Mbdel Name>_

* NO_FI LE_SYSTEM
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* NOPID
* NO TIME

* NO_MUTEX
e SSIZET

* DUMMY_FUNCTI ON_USERTAB_

18.4. Limitations

The generated source code FMUs contain afew limitations which are listed below:

» No support for the nonlinear solver MINPACK.

e On Windows, only the Microsoft Visual Studio compiler is supported.

* On machines without file system, the define NO_FI LE_SYSTEMhas to be set.

« All source code for external functions/objects has to be available.

« If the FMI functions need to be prefixed with the model name, the define FM 2_FUNCTI ON_PREFI X has to be set.

* Only one source code FMU may be used simultaneously in a Simulink model (when used together with FMI
Toolbox). Thisisdueto that thedefine FM 2_FUNCTI ON_PREFI X hasto be set for each FMU whichisnot possible
(it can only be set globally).
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Chapter 19. Cross-platform
generation of FMUs

While FMUs are generally specific to the platform they have been compiled on, OCT supports the generation of
Windows FMUs on CentOS,

Inthis chapter, we describe how to generate an Windows FM U (compiled with clang using librariesfrom Microsoft
Visual C (MSVC) 2015), from CentOS.

19.1. Prerequisites and setup

This feature requires the environment to be setup to support the use of clang, version 7. Installation and activation
can be done asfollows:

yuminstall centos-rel ease-scl-rh

yuminstall |lvmtoolset-7.0

./lopt/rh/llvmtool set-7.0/enabl e ## activation

clang --version ## check that installation has been successful

Next, one needs to download the necessary MSV C 2015 libraries required for compilation. These can be down-
loaded using the tools and instructions at https://github.com/model on-community/xwin.

OCT locates the MSV C 2015 libraries when compiling amodel, by checks in the following order:

1. The path specified in the compiler option target_platform packages directory.

2. The environment variable OCT_CROSS COMPILE_MSVC DIR.

3. The default location <OCT _Install_folder>/lib/win64.

Modelicalibrarieswith external code require compiled binaries compatible with the target platform, Windows, and
that the external code is compiled using the Microsoft Visual C (MSVC) 2015 compiler. Furthermore, the external
code needs to be additionally compiled to work on the native platform, CentOS.

19.2. Limitations
The following limitations apply to the cross-platform compilation of FMUs:
» OCT only supports cross-platform generation to Windows 64bit.

19.3. Example using the Python API

The following exampls demonstrates how to compile a Windows FMU on CentOS, using the OCT Python API:
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from pynodelica inport conpile_fnu

i nport os

nmsvc_dir_path = os.path.join('path', '"to', 'your', 'MVC2015', 'libraries')
conpi |l er _options = {'target_pl atform packages_directory' : msvc_dir_path}
nmodel = ' Model i ca. Mechani cs. Rot ati onal . Exanpl es. Coupl edd ut ches'

frmu = conpil e_frnu(nodel, platform="w n64', conpiler_options = conpiler_options)

Here, platform = ‘'win64' specifies that the target platform is Windows and the compiler option
target_platform_packages directory provides the compiler with the necessary MSVC libraries for a successful
cross-platform compilation.
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Chapter 20. Limitations

This page lists the current limitations of the OCT platform.

The following limitations apply to the language elements that can be used:

Support for partial function callsis limited.

For Modelica 3.4, the language elements described in the specification in chapter 16 - Synchronous L anguage

Elements and chapter 17 - State Machines, are not supported.

The following built-in functions are not supported:

term nal ()

The following built-in functions are only supported in FM Us:

tion(...)

ceil (x) i nt eger (x) reinit(x, expr) div(x,y)
nmod( X, y) sanpl e(start,interval ) edge(b) pre(y)
sem Linear(...) fl oor(x) ren(x,y) sign(v)
initial () del ay(...) spatial Di stri bu- change(v)

The following operators are only partially supported:

honot opy()

The following annotations are not supported:

arraylLayout

obsol ete

unassi gnedMessage

The following annotations are limited:

* ThezerobDerivati ve annotation is treated the same asthe noDer i vat i ve annotation.

» Thei nver se annotation does not support using referenceswith array indices or dotted references asarguments
to the inverse function.

Thereislimited support for using arraysin record arrays.

Partial derivatives are not supported.
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» Thereislimited support for quoted identifiers (i.e. the secondary form for identifiers, that is enclosed in single
guotes, e.g. 'a quoted name).

» No support for non-parameter array size declarations. This means that all array size declarations must be of
constant or parameter variability.

« Index reduction fails in some complex cases. It is possible to work around this by setting the st at eSel ect
attribute manually.

In the Optimica front-end the following constructs are not supported:
» Annotations for transcription information.
The following limitations apply to optimization using CasA Di-based collocation with OCT:

 Incomplete support for the | nt eger and Bool ean types: To the extent that they are supported, they are treated
more or lesslike reals.

e Nosupportforstringandlinited support for enumeration types.
« Attributes with any name can be set on any type of variable.

» The property of whether an optimization problem has free or fixed time horizon cannot be changed after com-
pilation.

 Limited support for external objects/ functions. Only one external object of the sametypeis supported. Limited
support for arrays and records. Limited support for derivative annotations.

The following limitations apply to FM Us compiled with OCT:

* Directional derivatives are known to have limitations in some cases.

« Asynchronous simulation is not supported.

The following restrictions apply to importing CS FMUSs:

» Modelsimported with fmumodelica cannot be compiled with the compiler option ¢_compiler set to msvs.
The following restrictions apply to exported FMUs following FMI 2.0:

* Models with external objects may lead to undesired behavior when used together with set/get of FMU states as
well as the serialization and de-serialization of FMU states.

The following restrictions apply to OCT MATLAB® Interface:

» The featuresin the optimization framework of oct . nl psol . * should be regarded as experimental.
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The following restrictions apply to the hand guided tearing feature:

» Hand guided tearing isonly supported for steady state simulation. Using hand guided tearing in conjunction with
other types of simulation (e.g. dynamic simulation) is untested and has undefined behavior.

The following restrictions apply to encrypted libraries:
* Itisnot possible to optimize models that use encrypted libraries.
The following are known issuesin the API;

« getAllMatchingRedeclareChoices() performs a global analysis of all modelica classes the first timeit is called.
The result of the analysisisflushed after editing operations. Therefore, getAllMatchingRedecl areChoices() can
be expensiveto useif callsto it are interleaved with editing operations.

e There are known issues with how qualifiedName() works with respect to elements under simple short
classes and arrays. Both relative (QualifiedNameProvider.qualifiedName(editingClass)) and non-relative
(InstanceElement.qualifiedName()) versions of qualifiedName() are affected, but not in the sameway. Erroneous
names and/or oddly formatted names may be produced. This affects the Instance-API but not the Source-API.

 If afilecontainsalinethat is at least 4096 characterslong, all formatting, including whitespace and comments,
islost in that file. Operations retrieving source text from such afile, including saving the file through the OCT
AP, will show the source text with OCT's default formatting.

» After performing an editing operation, the results of the SourceElement methods getSourceBeginLing(), get-
SourceBeginColumn(), getSourceEndLing() and getSourceEndColumn() are undefined for all elementsin all
changed files.
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Chapter 21. Common Functionality

21.1. Obfuscating Variables in a Functional Mock-up
Unit

A model has a number of variables. When the model is compiled by OCT, the default behavior is to make all
variables visible in the output Functional Mock-up Unit(FMU) with the structured Modelica naming intact. The
information about the M odelica source code that can be derived from the FMU can be reduced by limiting what
variables are exposed in the xml (see Section 21.1.1) and by automatically renaming variables (see Section 21.1.2).

21.1.1. Restricting Exposed Variables in a Functional Mock-up
Unit

A variable is an interna variable if it is not an input, output, or state variable or a runtime option. All internal
variables can be hidden by using the compiler option. Note that an internal variable here is not the same as an
internal variable in the FMI specification.

excl ude_i nternal _vari abl es="*"

which using the Python interface, see Section 4.2.4, corresponds to
from pynodelica i nport conpile fnu

ny_frmu = conpil e_frmu(' Mdelica. Mechani cs. Rot ati onal . Exanpl es. First',
conpi | er _opti ons={' exclude_internal _variables':"'*'})

Some hidden variables can then be selectively exposed by using the compiler option
i ncl ude_i nt ernal _vari abl es where one or more variable name patterns can be specified. The variable name
patterns are specified using GLOB patternsl. Specifying the compiler option

include_internal vari abl es="name*"

will expose al internal variables that have a name that begins with nanme. To specify several GLOB patterns,
separate them by a space character. For instance

include_internal variabl es="x* y*"
will expose all variables which begin with the letter x or y. Using the Python interface, this would correspond to
from pynodel i ca i nport conpile_fnu

ny_fmu = conpil e_fmu(' Mbdel i ca. Mechani cs. Rot ati onal . Exanpl es. First',
conpi l er _options={"include_internal variables':"'x* y*'})

lhttps://en.wi kipedia.org/wiki/Glob_%28programming%29
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The GLOB pattern is matched with the names of the FMI variables, not the Modelica variables. For Modelica
arrays, the glob pattern should match the names of the elements, rather than the name of the array variable. Note
that GLOB syntax include brackets as a wildcard definition so when matching with Modelica array variables the
brackets have to be escaped using back slash.

include_internal variabl es="x\\[1\\"

In addition, GLOB patterns can also be added using the options i ncl ude_i nt er nal _vari abl es_from and
excl ude_i nt ernal _vari abl es_f rom The values of these options should be set to pathsto filesthat contain lines
similar to the input of the i ncl ude_i nt ernal _vari abl es and excl ude_i nt er nal _vari abl es options. The to-
tal lists of GLOB patterns used for filtering is built using both the base option and the *_from option. We could
achieve the same effect as the previous example by pointing i ncl ude_i nt er nal _vari abl es_f r omto afile with
the following contents:

X* y*
Since the file also separates by newlines it could also be represented as:

X*
y*

21.1.2. Automatic Renaming of Variables in a Functional Mock-up
Unit

The default behavior of the compiler is to maintain the structured names derived from the Modelica source
code. This can be configured by setting the options obf uscat e_vari abl es, obf uscate_vari abl es_from
keep_variables, and keep_variables_from The options are configured in a similar way as
excl ude_i nt ernal _vari abl es etc. from the previous section. The following example will rename all variables
that does not end their name with x.

obf uscat e_vari abl es="*"
keep_vari abl es="*x"

When renaming is performed the compiler also generates a file with a mapping from the new names to
the old names. For an FMU nodel . f mu the mapping file is put in the same directory with the name
model . f mu. var Map. t xt . Thefirst line startswith Gul D and what follows is the same guid that iswritten into the
FMU, thiscan beused to validate that amap file belongsto aspecific FMU. Each line after that containsthe new and
old name of arenamed variable, separated by a space. Below is an example of what amapping file might look like.

QU D abc321
input_0 m a[ 1]
state_0 m a[ 2]
var_0 m a[ 3]
var_1 x

205



Appendix A. License Installation

A.l. Introduction

Modelon provides products that are licensed with the FlexNet Publisher license system. Modelon generates com-
pliant license files and vendor daemons via FlexNet for their suite of products. This documentation guides you
through some basic steps for installing license files and license servers. Detailed information about the FlexNet
Publisher license system can be found at http://Iearn.flexerasoftwar e.conmv/content/EL O-LMGRD.

For instructions on how to retrieve alicensefile, see Section A.2.

For instructions on how to install alicensefile, see Section A.3.

For instructions on how to install alicense server, see Section A.4.

For instructions on how to borrow licenses from a server for offline use, see Section A.5.

For trouble shooting and contacting Modelon support, see Section A.6.

A.2. Retrieving a license file

There are different types of license models that can be used with Modelon products.
» Node-locked (No license server required)

Thislicense enables use on a single computer. The license cannot be moved from one computer to another. The
license islocked for use on a computer with a specific MAC address.

» Server (Requires alicense server)
This licensing model represents a classic network configuration with a server and users. The server grants or
denies reguests from computers in the network to use a program or feature. The license file specifies the maxi-
mum number of concurrent users for a program or feature. There is no restriction for which computer is using
the program or feature, only in the number of programs and features that can be used simultaneously.

The computer on which the server is running cannot be changed. The server computer's MAC address must be
provided to Modelon to generate the license file.

» Evaluation license (Node Locked)

Thislicense enables a program or feature for alimited amount of time and is the same as a node-locked license.
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Please contact the Model on sales department at <sal es@rodel on. core to purchasealicense or to get an evaluation
license. In order to obtain a license file for a node-locked license, you must provide the MAC address of your
computer. If you are using a license server, you must provide the MAC address of the server. In Section A.2.1
below, you will find instructions for how to retrieve the MAC address of a computer.

A.2.1. Get MAC address

M odelon usesthe Ethernet address (MAC address), also called the host I D, to uniquely identify a specific computer.
Therefore, you must provide the MAC address of the computer on which you want to use the program or feature.
For aserver license, the MAC addressfor the server computer isrequired, not all the client computersin the network
that will use the program or feature. For a node-locked license, the MAC address of the computer on which the
license will be used must be provided.

Note: Modelon only allows ONE MAC address for each computer. Please disable and unplug all network devices
that are not permanently connected to the computer such as laptop docking stations, virtual machines and USB
network cards.

* Windows
1. Opencmd
Windows 7 and Vista

a. Click the Start button
b. Type cmd in the search bar and press enter.
Windows XP
a. Click the Start button.
b. Click onRun....
c. Typecmd inthetext box and click OK.
2. Runl nhosti d. exe

Type the full path to Imhostid.exe within quotes and press enter. | mhost i d. exe isnhormally located in <i n-
stallation folder>\license_tool s\Inhostid. exe.

3. Usethishostid when you arein contact with Modelon. If multiple hostids are listed, select one that is perma-
nent for the computer.
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e CAWINDOWS\system32\cmd.exe

C:~>"CinProgram Files“Modelon“~FMI Toolbox 1 3. 1\11t:en..e _tools:\lmhostid.exe"
Ilmhostid — Copyright {c> 1989-2811 Fle.-. Inc. A1l Rights R9991ued
The FLEXnet host ID of this machine is “BB2219175874"

Gy

Figure A.1 Lmhostid.exe run on Windows listing the computer's MAC address.
* Unix
1. Open aterminal and change directory to the <i nstal l ati on fol der>/1icense_tool s/ .

Run I mhost i d and use the hostid listed when you are in contact with Modelon. If multiple hostids are listed,
select one that is permanent for the computer.

A.3. Install alicense

After purchasing a license, you should receive alicense file with the file extension *. | i ¢. This file must be put
in a specific folder for the application to find it.

A.3.1. Installing a node-locked license

A.3.1.1. Windows
1. Closethe applicationif it is already running.
2. Open the Application Data folder.
Windows 7 and Windows Vista
a. Click the Start button.
b. Typeshel | : AppDat a in the search bar and press enter.

Windows XP
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a. Click the Start button.
b. Click on Run....
c. Typeshel | : AppDat a in the text box and click OK.

3. The Application Data folder should now be open. Check that its path is of the form C:\Users\YourUser-
Name\AppData\Roaming.

4. Create the folder Mbdel on\ Li censes\ Nodel ocked if it does not exist already.
5. Putyour licensefilein thefolder Nodel ocked.
A.3.1.2. Unix

e Copy your licensefileto thefolder <i nst al | ati on fol der >\ Li censes\ Nodel ocked.

A.3.1.3. Updating the license

To update thelicensefile, you should overwrite the old licensefile with the new one. Ensurethat the old licensefile
isoverwritten or removed from thefolder sinceit may otherwise be used instead of the new one, and the application
may fail to check out alicense. Note that you must restart the program for license changes to take effect.

A.3.2. Installing a server license

Note that these are not instructions for installing a license file on a server. These are instructions for the end user
of the program or feature. The assumption isthat the server isaready up and running and that the | P address to the
server and the port number is already known. The I P address and the port number, if needed, should be provided
by the license server administrator.

The application can connect to the license-server and daemon either by reading a license file or an environment
variable.

A.3.2.1. Windows
1. Closethe applicationif it is already running.
2. Create an empty text file

Windows 7 and Windows Vista

a. Click the Start button.

b. Type Not epad in the search bar and press enter.
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Windows XP

a. Click the Start button.

b. Click onRun....

c. Type Not epad in the text box and click OK.
Configurethe licensefile.

a. Copy thefollowing text in to the text document

SERVER <i p- addr ess> ANY <port >
USE_SERVER

b. Change <i p- addr ess> to the IP address of the server.

¢. Change <por t > to the port number that is being used. If you do not have a port number, you can remove
the whole <port >. For example, the license file should look like the following for a license server with
IP address 192.168.0.12 using port 1200.

SERVER 192. 168. 0. 12 ANY 1200
USE_SERVER

d. Save the file with afilename with the extension *. | i ¢ in atemporary place. The file will be moved in a
later step. Y ou can now close Notepad.

Open the Application Data folder.

Windows 7 and Windows Vista

a Click the Start button.

b. Typeshel | : AppDat a in the search bar and press enter.
Windows XP

a. Click the Start button.

b. Click on Run....

c. Typeshel | : AppDat a in the text box and click OK.
The Application Data folder should now open.

Create the folder Model on\ Li censes\ Ser ver if it does not exist already.
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6. Putthelicensefileyou just created in the folder Server.
A.3.2.2. Unix

1. Closethe program if it isalready running.

2. Create an empty file with the file extension name*. 1 i c.
3. Configurethelicensefile.

a. Copy the following text in to the text document

SERVER <i p- addr ess> ANY <port >
USE_SERVER

b. Change <i p- addr ess> to the IP address of the server.

¢. Change <por t > to the port number that is being used. If you do not have a port number, you can remove
the whole <por t >. For example, the license file should look like the following for a license server with
IP address 192.168.0.12 using port 1200.

SERVER 192. 168. 0. 12 ANY 1200
USE_SERVER

4. Copy your licensefileto thefolder <i nstal | ati on fol der >\ Li censes\ Server.

A.3.2.3. Using the environment variable

An aternative to specify how the application should connect to the license server isto set the environment variable
MODELON_LICENSE_FILE. Thevalue can be set to port@host, where port and host are the TCP/IP port number
and host name from the SERVER linein the license file. Alternatively, use the shortcut specification, @host, if the
license file SERVER line uses a default TCP/IP port or specifies aport in the default port range (27000#27009).

A.3.2.4. Updating the license

To update the license file, you can either redo the installation instructions described above or make the changes
in the license file directly. Ensure that the old license file is overwritten or removed from the folder since it may
otherwise be used instead of the new one, and the application may fail to check out alicense. Note that you must
restart the program before the changes can take effect.

A.4. Installing a license server

To install a license server, you must have a server license file. Please contact <sal es@mwdel on. come to obtain
the server license file. This license file must also be configured prior to use by by setting the | P address and port
as shown in Section A 4.1
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Modelon products use a licensing solution provided by Flexera Software. It is recommended that you install the
latest version of the server software, which is available from http://learn.flexerasoftware.com/content/EL O-L M-
GRD . Modelon products require alicense server version number v11.10.0.0 or later. A license server and alicense
daemon are required and are distributed with the product you are installing. If you have not received the server
application or license daemon with your product, please contact <sal es@model on. conp.

The following step by step instructions for installing a license server assume that no other Flexera license server
isaready installed.

A.4.1. Configure the license file

When alicense server isinstalled, the server needsalicensefile provided by Modelon. Thisfile must be configured
before it can be used.

1. Openthelicensefilein atext editor. The file may look like the example below:

SERVER 192. 168. 0.1 080027004ca5 25012
VENDOR nodel on
FEATURE FM _TOOLBOX nodel on 1.0 3-feb-2012 12 SI G\="0076 305..."

2. Edit the SERVER line where the |P address, 192. 168. 0. 1, should be replaced with the IP address of the
server. Also change the port address, 25012, to the desired port or remove it to use default ports. The IP
address and potentially also the port address should be provided to the end users so they can configure their
license files to connect to the server.

A.4.2. Installation on Windows

Inthe <installation fol der>\1icense_tools folder that is distributed with your product, you will find the
fileslisted below.

Thelisted files are used to set up and configure the license server.

« Imgrd.exe (license server)

» modelon.exe (license daesmon)

 Imutils.exe (configure- and utility functions)

 Imtools.exe (Windows GUI for setting up the license server as a Windows service)

To configure alicense server manager (1 ngr d) as a service, you must have Administrator privileges. The service
will run under the Local System account. This account is required to run this utility as a service.

1. Make sure that license daemon nodel on. exe isin the same folder asthe license server, | ngr d. exe.
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2. Runl nt ool s. exe
3. Click the Configuration using Services button, and then click the Config Services tab.

4. In the Service Name, type the name of the service that you want to define, for example, Model on Li cense
Server.

5. Inthe Path to the Imgrd.exefile field, enter or browseto | ngr d. exe.

6. Inthe Path to thelicensefilefield, enter or browse to the server license file.

7. In the Path to the debug log file, enter or browse to the debug log file that this license server should write.
Prepending the debug log file name with the + character appends logging entries. The default location for the
debug log fileisthec: \ wi nnt\ Syst enB82 f ol der . To specify adifferent location, be careful to specify afully
qualified path.

8. Make thislicense server manager a Windows service by selecting the Use Ser vices check box.

9. Optional. Configure the license server to start at system startup time by selecting the Start Server at Power
Up check box.

10.To save the new Mbdel on Li cense Server service, click Save Service.

File Edit Mode Help

] Borrowing I

Save Service
Remove Service

Configure Service

Service Mame |Modelon Licenze Server hd

Path ta the Imgrd.exe file |I::'\F'mgram Files\Modelonh Cornmman'flextoolshlm m

i i Browsze
Path to the licenss file | C-icense.lic

Path to the debug lag file |C:\temphflexlog lag Browse | Wigw L':'g---l

[~ Start Server at Power Up [v Use Services

Figure A.2 Setup the license server with Imtools.exe
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11.Click the Service/License File tab. Select the service name from the list presented in the selection box. In this
example, the service nameis Model on Li cense Server .

12.Click the Start/Stop/Rer ead tab.

13.Start Model on Li cense Server by clicking the Start Server button. Model on Li cense Server license server
starts and writes its debug log output to the file specified in the Config Servicestab.

A.4.3. Installation on Unix

Inthe<instal l ation fol der>\Iicense_t ool s folder that is distributed with the product, you can find the files
listed below.

« Imgrd (license server)

» modelon (license daemon)

 Imutil (configure- and utility functions)

Before you start the license server, Imgrd, make sure that license daemon modelon is in the same folder.

Start | mgr d from the UNIX command line using the following syntax:

Imgrd -c license file_ list -L [+]debug_| og_path

wherelicense_file_list iseither thefull path to alicense file or adirectory containing license files where all
filesnamed*. |i c areused. If thelicense file list value contains more than onelicensefile or directory, they must
be separated by colons. debug_| og_pat h isthe full path to the debug log file. Prepending debug_| og_pat h with
the + character appends logging entries.

Starting | mgr d from a root account my introduce security risks, and it is therefore recommended that a non-root
account is used instead. If | mgr d must be started by the root user, use the su command to run | ngrd as a non-
privileged user;

su usernane -c "lnmgrd -c license file_list -1 debug | og path"

Ensure that the vendor daemons listed in the license file have execute permissions for user nane.

A.5. License borrowing

License borrowing allows users to check out features from a license server for offline use for alimited period of
time. License borrowing isonly enabled if it was specified in the license order. If you would have a server license
and want to enable license borrowing, contact <sal es@rodel on. cone.
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A.5.1. Borrowing licenses for offline use

License borrowing isinitiated with thel mbor r owutility inl mut i I , distributed with your modelon product. License
borrowing must be initiated while having a connection to the license server. | mbor r owisinvoked called from the
command line, and the command syntax is

Imutil | nmborrow nodel on enddat e [endti ne]

The end date specifies for how long the license should be borrowed, and is on the form dd-mmm-yyyy, e.g. 01-
dec-2016. The end time of the borrow period is optional, and if given it should be on the form hh:mm. If no end
timeis specified, it defaults to 23:59, meaning that the license is borrowed for the full duration of the end date.

The default limit on the borrow time for Modelon productsis 420 hours (2.5 weeks) from when license borrowing
isinitiated. License administrators may lower this limit, but it cannot be increased.

Oncelicenseborrowingisinitiated, and until the end of theday that it isinitiated, any license for aModel on product
that is checked out will be borrowed for offline use until the end of the specified borrow period. Each license will
be borrowed only once even if it is checked out multiple times after initiating license borrowing.

In order to prevent borrowing of licenses that are not needed, the borrow status should be cleared after checking
out the licenses you need. As with initiating borrowing, clearing it is done with the I nbor r ow utility by issuing
the command

Imutil | mborrow -clear

Clearing the borrow status does not return any borrowed licenses.

To see which licenses are currently borrowed on your system, run the command
I'mutil | nborrow -status

Thiswill display all licenses currently borrowed, along with the end dates for their borrow periods.

A.5.2. Returning a borrowed license

Borrowed licenses can be returned before the specified end date by running
Imutil | nmborrow -return featurenane

f eat ur enare is the name of the specific feature in the license file, as shown by | mborrow -status. A single
product can contain multiple features, which have to be returned separately. Note that a connection to the license
server must exist in order to return borrowed licenses.

A.5.3. Options for the Vendor Daemon

The following options for the vendor daemon can be used to configure license borrowing.
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A.5.3.1. BORROW_LOWWATER

Specifies a number of licenses that can not be borrowed. This will ensure that there are always at least
BORROW_LOWWATER licenses to use on the license server.

The option syntax is
BORROW LOMMTER feature n

wheref eat ur e isthe name of the feature to limit and n is the amount of non-borrowable licenses for that feature.

A.5.3.2. EXCLUDE_BORROW

Specify auser or group who can not borrow licensesfor acertain feature. EXCLUDE_BORROW takes precedence
over INCLUDE_BORROW, meaning that in case conflicting options for inclusion and exclusion are set, the ones
for exclusion will be used.

The option syntax is

EXCLUDE_BORROW f eat ure type nane

wheref eat ur e isthe feature to prevent user(s) from borrowing, t ype isone of USER, HOST, DISPLAY, INTER-
NET, PROJECT, GROUP or HOST _GROUP, and nare is the name of the item to be excluded.

A.5.3.3. INCLUDE_BORROW

Specify auser or group who can borrow licenses for a certain feature. If options specified here conflict with those
for EXCLUDE_BORROW, the options for exclusion are used.

The option syntax is the same as for EXCLUDE_BORROW.

A.5.3.4. MAX_BORROW_HOURS

Set the longest allowed borrow period. The default for Modelon products is 420 hours (2.5 weeks), and it is only
possible to specify alower max value than this.

The option syntax is
MAX_BORROW HOURS feature n

wheref eat ur e iSsthe feature to set a borrow period limit for, and n isthe limit, in hours.

A.6. Troubleshooting license installation
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If you experience any problemswith the license, the error messages are usually descriptive enough to provide hints
asto the root cause of the problem. If the problem persists, please contact Modelon at <suppor t @odel on. cone.
Before contacting Modelon, support you should run | ndi ag and provide the resulting information. Follow the
instructions below to run | ndi ag.

A.6.1. Running Imdiag

* Windows
1. Opencmd
Windows 7 and Vista

a Click the Start button.
b. Type cmd in the search bar and press enter.
Windows XP
a. Click the Start button.
b. Click on Run....
c. Typecmd inthe text box and click OK.
2. Runl ndi ag. exe.

Type the full path to | ndi ag. exe within quotes and press enter. | mdi ag. exe isnormally located in <i n-
stallation fol der>\Ilicense_tool s\Indi ag. exe.

e Unix
e Openatermina and change directory tothe<i nstal | ati on fol der>/1icense_tool s/.
Run| mdi ag withthe. /1 mutil | nmdi ag command.

Note: I muti | requires LSB (Linux Standard Base) compliance to run. Some distributions, e.g. Ubuntu, do not
have LSB compliance by default and can thus not run the program. . /| nut i I then fails with amessage like

$> ./Inutil |ndiag
bash: ./lnmutil: No such file or directory

If this error occurs, please check if the required interpreter is installed on your system. The requirement can be
found with ther eadel f command, and the output should look similar to
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$> readelf -a lmutil | grep interpreter
[ Requesting programinterpreter: /lib64/I1d-1sb-x86-64.so. 3]

L SB should be available for install through a package manager. If installing it is not an alternative, a quick fix
isto symlink the required interpreter to the one on your system, i.e.

$> In -s <your |d> <required |d>

Note 2: FlexLM requires that network devices are named eth0, ethl, etc. When other namesare used, | mhost i d
will alwaysreturn 0 as host ID. Device names can be shown with thei f conf i g command. If your Linux distri-
bution uses a different naming scheme, it needs to be changed. The steps to change the naming scheme depend
on the distribution and release.

218



Appendix B. Compiler options

B.1. List of options that can be set in compiler

Table B.1 Compiler options

Option

Option type/
Default value

Description

al | ow_di screte_swi tches

bool ean /true

If enabled, then discrete switches are allowed in the mod-
el.

al | ow_di screte_vari abl es

bool ean /true

If enabled, then discrete variables such as Integers,
Booleans Strings or Enumerations are allowed in the
model.

allow_|ibrary_version_ mis-
mat ch

bool ean /f al se

If enabled, versions given in uses-annotations do not
need to match the version in the used library. If there
are uses-annotations that specify different versions of
the same library, then only the first loaded will be used.
Warnings will be given instead of errors.

al | ow_when_cl auses

bool ean /true

If enabled, then when-clauses are allowed in the model.

api _al | ow_m ssing_el enents

bool ean /true

If the API should allow getting only partial information
from component and classes due to missing classes. The
API will otherwise throw ModelicaNotFoundException if
any of the extended classes are missing.

automatic_tearing

bool ean /true

If enabled, then automatic tearing of equation systemsis
performed.

check_i nactive_ contition-
al s

bool ean / f al se

If enabled, check for errorsin inactive conditional com-
ponents when compiling. When using check mode, thisis
aways done.

component _nanmes_i n_errors

bool ean /true

If enabled, the compiler will include the name of the
component where the error was found, if applicable.

convert_free_dependent _
paraneters_t o_al gebraics

bool ean /true

If enabled, then free dependent parameters are converted
to algebraic variables.

di vide_by_vars_in_tearing

bool ean /fal se

If enabled, alessrestrictive strategy is used for solving
equationsin the tearing algorithm. Specifically, division
by parameters and variablesis permitted, by default no
such divisions are made during tearing.
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Option

Option type/
Default value

Description

enabl e_bl ock_function_ ex-
traction

bool ean /fal se

Looks for function callsin blocks. If afunction call ina
block doesn't depend on the block in question, it is ex-
tracted from the block.

enabl e_l azy_eval uati on

bool ean /fal se

If thisoptionissettotrue (defaultisf al se), then the set
of equation blocks that are evaluated with respect to the
value of adependent variableislimited to the minimal
Set.

event _indicator_structure

bool ean / f al se

If enabled, additional event indicator dependency infor-
mation iswritten to the model description in the FMU.
Thisisrelevant for, e.g., solvers of QSS type. Only valid
for FMI 2.0.

event _out put _vars

bool ean / fal se

If enabled, output variables are added to model descrip-
tion for each generated state event indicator.

expose_scal ar_equation_
bl ocks_in_interactive_fnu

bool ean /fal se

If enabled, unsolved scalar equations will be exposed to
the external solver when generating interactive FMU.

ext ernal _constant _ eval ua-
tion

i nt eger /5000

Time limit (ms) when evaluating constant callsto exter-
nal functions during compilation. O indicates no evalua-
tion. -1 indicates no time limit.

filter_warnings

string/""

A comma separated list of warning identifiers that should
be omitted from the logs.

gener at e_bl ock_j acobi an

bool ean / f al se

If enabled, then code for computing block Jacobiansis
generated. If blocks are needed to compute ODE Jaco-
bians they will be generated anyway.

generate_htnm _di agnostics

bool ean /fal se

If enabled, model diagnostics are generated in HTML
format. This includes the flattened model, connection
sets, dliassetsand BLT form.

generate_htn _di agnostics_
out put _directory

string/"."

Path to directory where compiler output should be gen-
erated for the option 'gener at e_ht n _di agnosti cs'.
Default valueis'.'. Directory iscreated if it doesn't ex-
ist. The html diagnosticsis generated in a subdirectory of
this directory.

generate_json_statistics

bool ean /f al se

If enabled, model statistics are generated in JSON for-
mat.

generate_json_statistics_
out put _directory

string/'."

Path to directory where compiler output should be gen-
erated for the option 'gener at e_j son_st ati sti cs'. De-
fault valueis'.". Directory is created if it doesn't exist.
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Option

Option type/
Default value

Description

The JSON ¢tatistics is generated in a subdirectory of this
directory.

gener at e_ode_j acobi an

bool ean / f al se

If enabled, then code for computing ODE Jacobians is
generated.

generate_svg_met adata_t ag

bool ean /true

Controlsif the metadata tag is added during SVG gener-
ation. The tag has information about connectors, such as
the name and coordinates

hal t _on_war ni ng

bool ean /fal se

If enabled, compilation warnings will cause compilation
to abort.

hand_gui ded_t eari ng

bool ean / f al se

If enabled, hand guided tearing of equation system is per-
formed.

ht m _di agnosti cs_contents

string/
‘statistics'

Space-separated list of content that will be generated if
option 'gener at e_ht m _di agnosti cs'isenabled. Sup-
ported values: ' st atistics', build',' nodel' and
"full'.Value' statistics' isthestandard diagnostics.
Vaue' bui | d' isbuild information including compiler
version, platform information, dependent libraries. Value
' nodel ' ismodel documentation. Vaue' ful I'* implies
all the other values. Default is' stati stics'.

i ndex_r eduction

bool ean /true

If enabled, then index reduction is performed for high-in-
dex systems.

init_nonlinear_sol ver

enuneration/
ki nsol

Decides which nonlinear equation solver to use in the ini-
tial system. Alternativesare' ki nsol ', ' real time' or
' mi npack' (DEPRECATED).

inline_integration

bool ean / f al se

If enabled, inlineintegration is applied.

interactive_fmu

bool ean / f al se

If enabled, the DAE system is converted into an interac-
tive FMU where al residual equations and iteration vari-
ables have been changed into top level outputs and in-
puts.

merge_bl t _bl ocks

bool ean / f al se

If thisoptionissettotrue (defaultisfal se), BLT
blocks will be constructed so that al level one HGT pairs
and al unpaired HGT will reside inside the same BLT
block.

nmsvs_path

string/"’

Path to the Microsoft Visua Studio Compiler to compile
C code with. Will cause compilation to fail if noinstalla-
tion is found.
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Option Option type/ Description
Default value
MEVS_ver si on string/"" Microsoft Visual Studio Compiler version or year edition

to compile C code with. If this option is not set, then the
first installation found when searching the default install
locations will be used. The default install locations are
searched in the following order: 2012 (11.0), 2010 (10.0),
2015 (14.0), 2017 (15.0), 2019 (16.0), 2022 (17.0), 2013
(12.0). If the msvs_pat h option is not set, then this op-
tion will be used to find an installation among the default
install locations. If the msvs_pat h option is set then on-
ly that location will be searched and this option will be
used to verify the compiler version of the found version.
In both cases the compilation will fail if the installation
found mismatches the version specified with this option.

nonl i near _sol ver

enuneration/
ki nsol

Decides which nonlinear equation solver to use. Alterna-
tivesare' kinsol ', 'real tine' or' mnpack' (DEPRE-
CATED).

package_ht nl _docunent ati on

bool ean / f al se

If enabled, then all diagnostics generated via use

of options'gener at e_ht m _di agnosti cs' and

'ht M _di agnosti cs_cont ent s" will also be pack-
aged as documentation in the FMU. If you are
working with unencrypted libraries with protec-

tion annotations it is recommended that option

'treat _libraries_as_encrypted' isasoenabledto
limit the packaged documentation what would be pack-
aged if the libraries were encrypted.

snmoot hness_check_as_ war n-
i ngs

bool ean / fal se

If enabled, then smoothness check problems are given as
warning instead of errors. Otherwise problems found are
given as errors.

state_initial _equations

bool ean /fal se

If enabled, the compiler ignoresinitial equationsin the
model and adds parameters for controlling initial values
of states. Default isf al se.

state_start_val ues_fi xed

bool ean /fal se

If enabled, then initial equations are generated automat-
ically for differentiated variables even though the fixed
attribute is equal to fixed. Setting thisoptiontotrue is,
however, often practical in optimization problems.

system continuity_order

integer /-1

Require the model to be at least n times continuous dif-
ferentiable where n is an integer given by this option. De-
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Option

Option type/
Default value

Description

fault valueis -1 which means that discontinuations are al-
lowed.

tearing_division_tol erance

real /1.0E-10

The minimum allowed size for adivisor constant when
performing tearing.

tine_events

bool ean /true

If enabled, operators are allowed to generate time events.

al low_nmul tiple_residuals_
i n_hgt _bl ocks

string/"'lev-
el 1'

Controlsif HGT blocks are allowed to have more than
oneresidual. ' fal se' - All HGT blocks can only have
oneresidual. An error is given if there are HGT blocks
with more than one residual. 'level1' - Only blocks with
HGT level=1 are allowed to have more than one residual .
An error isgiven if there are HGT blocks at level=2 (or
higher) with more than one residual. As a consequence
combining this option with mer ge_bl t _bl ocks=true
guarantees a single unsolved block inthe FMU. " true' -
No error check isdone, all HGT blocks may have multi-
pleresiduals.

al | ow_non_scal ar _nested_
bl ocks

bool ean /true

If disabled, an error isgiven if there are nested blocks
which are non-scalar.

automatic_add_initial _
equati ons

bool ean /true

If enabled, then additional initial equations are added to
the model based equation matching. Initial equations are
added for states that are not matched to an equation.

c_conpiler

string/"' gcc'

The C compiler to use to compile generated C code.

cc_extra_flags

string/': Q1

Optimization level for c-code compilation

cc_extra_flags_applies_to

enunrer ati on /
functions

Parts of c-code to compile with extra compiler flags spec-
ified by cconpi | er _extra_fl ags.

cc_split_element_limt

i nt eger /1000

When generating code for large systems, the code is split
into multiple functions and files for performance reasons.
This option controls how many scalar elements can be
evauated by afunction. Value less than 1 indicates no

split.

cc_split_function_limt

i nteger /20

When generating code for large systems, the code is split
into multiple functions and files for performance reasons.
This option controls how many functions can be generat-
edin afile. Valuelessthan 1 indicates no split.

cc_split_function_limt_
gl obal s

i nt eger /200

When generating code for large systems, the code is split
into multiple functions and files for performance reasons.
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Option Option type/ Description
Default value
This option controls how many functions can be gener-
ated in afilefor initialization of global variables. Value
less than 1 indicates no split.
cc_string_literal _linit i nteger /10000 |Limitthelength of any string literal in the generated C

code to at most this length, in characters. 0 means no lim-
it. The C specification states that any compliant C com-
piler must support string literals at least 509 characters
long. Setting this option to 509 will generate C code that
is compliant with any standards-compliant C compiler.
Most major compilers have higher or no practical limit.

check_| ocal _bal anci ng

bool ean /f al se

If enabled, the compiler will check local model balance.
If amodel is not balanced an error will be reported.

common_subexp_elim

bool ean /true

If enabled, the compiler performs a global analysis on the
equation system and extract identical function callsinto
common equations.

const ant _par aneters

bool ean / f al se

Fixed parameters except external objects will be
treated as constants. A dependent parameter is on-

ly changed to constant if the binding equation or

start value can be treated as constant. The start

value is used when there is no binding equation.

See the options const ant _par anet er s_i ncl ude,
const ant _paraneters_i ncl ude_from

constant _paraneters_ski p and

const ant _paranet ers_ski p_f romfor finer control of
which parameters are changed to constants. The default is
that all parameters are changed.

const ant _paraneters_ in-
cl ude

string/""

Name pattern(s) of parameter variables that should be
made constants with const ant _par anet er s. These pa-
rameters will be changed to constants. A dependent pa-
rameter is only changed to constant if the binding equa-
tion or start value can be treated as constant. This option
overridesthe selection in const ant _paranet ers_ski p
to provide finer control over which parameters are made
constants. Multiple name patterns are separated by
spaces.

const ant _paraneters_
i ncl ude_from

string/"'

Path to file (absolute, relative, file URI, or model-
ica URI) which contains name patterns (globs) of
parameter variables that are made constants with
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Option

Option type/
Default value

Description

const ant _par anet er s. The contents of the file are treat-
ed asinput to the const ant _par anet ers_i ncl ude op-
tion. Multiple name patterns are separated by spaces.

const ant _paranet ers_skip

string/""

Name patterns (globs) of parametersto be exclud-
ed/skipped from the effect of const ant _par anet er s,
and therefore will remain parameters. The pat-

tern operates on the qualified name of the compo-

nent. This behavior can be overridden by the se-

lection from const ant _par anet ers_i ncl ude and
const ant _par amet ers_i ncl ude_f rom A dependent pa-
rameter is only changed to constant if the binding equa-
tion or start value can be treated as constant. Multiple
name patterns are separated by spaces. Individua ele-
ments in primitive arrays cannot be excluded.

constant _paraneters_skip_
from

string/"'

Path to file (absolute, relative, file URI, or model-
ica URI) which contains name patterns (globs) of
variables to be excluded/skipped from the effect of
const ant _par anet er s and not made constants.
The contents of the file are treated as the input to the
const ant _par amet er s_ski p option.

convert _to_input

string/"’

Name pattern(s) of parameters to be converted to in-

put variables. Multiple name patterns are separated

by spaces. Only independent fixed parameters, that

are not used in a context where only parameters are
alowed, can be converted. Patterns are GLOB pat-

terns, for more information see description of the

'excl ude_i nt er nal _vari abl es' option in the users
guide, in 'Obfuscating Variables in a Functional Mock-up
Unit'.

convert_to_input_from

string/""

Path to file (absolute, relative, file URI, or modelica
URI) that contains name pattern(s) of parametersto be
converted to input variables. Multiple name patterns are
separated by spaces. Only independent fixed parame-
ters, that are not used in a context where only parame-
ters are allowed, can be converted. Patterns are GLOB
patterns, for more information see description of the
'excl ude_i nt ernal _vari abl es' option in the users
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Option

Option type/
Default value

Description

guide, in 'Obfuscating Variables in a Functional Mock-up
Unit'.

di agnostics_limt

i nt eger /500

This option specifies the equation system size at which
the compiler will start to reduce model diagnostics. This
option only affects diagnostic output that grows faster
than linear with the number of equations.

dynani c_st at es

bool ean /true

If enabled, dynamic states will be calculated and generat-
ed.

dynam c_states_limt

i nteger /10

Limit for size of dynamic state sets. Value < 0 indicates
infinite. Value == 0 indicates disabled.

elimnate_alias_constants

bool ean /true

If enabled, then alias constants are eliminated from the
model.

elimnate_alias_paraneters

bool ean /true

If enabled, then alias parameters are eliminated from the
model.

elimnate_alias_variables

bool ean /true

If enabled, then dlias variables are eliminated from the
model.

elimnate_flow _equations

bool ean /true

Breaks up algebraic loopsin flow-like equations. Flow-
like equations are linear equations with coefficients that
are +1, -1, or 0. Thisincludes the flow equations generat-
ed from connection sets.

elimnate_linear_equations

bool ean /true

If enabled, then equations with linear sub expressions are
substituted and eliminated.

enabl e_nodel on_i st opl evel _

annot ati on

bool ean /f al se

If enabled, annotating a connector class with
(__Modelon(isTopLevel=t r ue)) causes instances of it
to always be treated as top-level connectors, even if de-
clared in amodel that is not top-level itself.

enabl e_structural _ di agno-
sis

bool ean /true

If enabled, structural error diagnosis based on matching
of equations to variablesis used.

enabl e_vari abl e_scal i ng

bool ean /fal se

If enabled, then the' noni nal ' attribute will be used to
scale variables in the model.

equation_sorting

bool ean /true

If enabled, then the equation system is separated into
minimal blocks that can be solved sequentially.

excl ude_internal _vari abl es

string/""

Name pattern(s) of internal variablesto be exclud-
ed from the compilation target. Overridden by se-
lection fromi ncl ude_i nternal _vari abl es and
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Option Option type/ Description
Default value
i ncl ude_i nternal _vari abl es_f r om Multiple name
patterns are separated by spaces. More documentation
can be found in the users guide in 'Obfuscating Variables
in a Functional Mock-up Unit'.
exclude_internal _variables_|[string/"" Path to file (absolute, relative, file URI, or modelica

from

URI) which contains name pattern(s) of internal variables
to be excluded from the compilation target. Overridden
by selection fromi ncl ude_i nt er nal _vari abl es and

i ncl ude_i nternal _vari abl es_f rom Multiple name
patterns are separated by spaces and new lines. More
documentation can be found in the users guide in 'Obfus-
cating Variablesin a Functional Mock-up Unit'.

export_functions

bool ean /f al se

Export used Modelica functions to generated C code in a
manner that is compatible with the external C interfacein
the Modelica Language Specification.

export_functions_vba

bool ean /fal se

Create VBA-compatible wrappers for exported functions.
Requires the option export _f uncti ons.

expose_tenp_vars_in_fmu

bool ean / f al se

If enabled, then all temporary variables are exposed in
the FMU XML and accessible as ordinary variables

ext ernal _constant _
eval uati on_dynamni c

bool ean /true

If enabled, callsto external functionswill be evaluated
during compilation using a pre-compiled program (in-
stead of generating and compiling one), if possible.

ext ernal _constant _
eval uati on_max_proc

i nteger /10

The maximum number of processes kept alive for eval-
uation of external functions during compilation. This
speeds up evaluation of functions using external objects
during compilation.If less than 1, no processes will be
kept alive, i.e. thisfeature is turned off.

extra_resources

string/"’

List of filenames (absolute or relative to working directo-
ry, separated by the platform path separator) of filesto be
included in the resources/extra directory in the generated
FMU.

extra_resources_from

string/""

Path to afile (absolute or relative to working directory)
which contains alist of filenames (absolute or relative to
working directory, separated by newline) of filesto bein-
cluded in the resources/extra directory in the generated
FMU.
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Option

Option type/
Default value

Description

function_inci dence_ compu-
tation

string/' none'

Controls how matching a gorithm computes incidences
for function call equations. Possible values: ' none' ,
"all'. With' none' all outputs are assumed to depend
onal inputs. With ' al I * the compiler analyses the func-
tion to determine dependencies.

function_inverses

bool ean /true

If enabled, the compiler will use the inverse annotation to
find function inverses when solving equations.

generate_runtinme_option_
par anet ers

bool ean /true

If enabled, generate parameters for runtime options.
Should always bet r ue for normal compilation.

honot opy_t ype

enuneration/
act ual

Decides how homotopy expressions are interpreted dur-
ing compilation. Can be set to either * si npl i fied or
"actual ' which will compile the model using only the
simplified or actua expressions of the homotopy() opera
tor.

ignore_within

bool ean /fal se

If enabled, ignore within clauses both when reading input
files and when error-checking.

i nclude_i nternal _vari abl es

string/"’

Name pattern(s) of internal variablesto bein-

cluded in the compilation target. Overrides selec-

tion from excl ude_i nt er nal _vari abl es and

excl ude_i nt ernal _vari abl es_f rom Multiple name
patterns are separated by spaces. More documentation
can be found in the users guide in 'Obfuscating Variables
in a Functional Mock-up Unit'.

include_internal variables_

from

string/""

Path to file (absolute, relative, file URI, or modelica
URI) which contains name pattern(s) of internal vari-
ablesto be included in the compilation target. Over-
rides selection from excl ude_i nt ernal _vari abl es and
excl ude_i nt ernal _vari abl es_f rom Multiple name
patterns are separated by spaces and new lines. More
documentation can be found in the users guide in 'Obfus-
cating Variablesin a Functional Mock-up Unit'.

include_protected_ vari -
abl es

bool ean / fal se

Includes protected variables in the compilation target in-
terface if the protection annotation on the class alows
viewing variables.

i nline_functions

enuneration/
trivial

Controls what function calls areinlined. ' none' - no
function calsareinlined. ' trivial' -inlinefunction
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Option

Option type/
Default value

Description

callsthat will not increase the number of variablesin the
system.' al | ' -inlineall function callsthat are possible.

inline_integration_nethod

string/'Im
plicitEuler'

This option controls the method to use together with in-
line integration.

keep_vari abl es

string/""

Name pattern(s) of variables that should not

be obfuscated by renaming. Overrides se-

lection from obf uscat e_vari abl es and

obf uscat e_vari abl es_f r om Multiple name patterns
are separated by spaces. More documentation can be
found in the users guide in 'Obfuscating Variablesin a
Functional Mock-up Unit'.

keep_vari abl es_from

string/"’

Path to file (absolute, relative, file URI, or modeli-

ca URI) which contains name pattern(s) of variables

that should not be obfuscated by renaming. Over-

rides selection from obf uscat e_vari abl es and

obf uscat e_vari abl es_f r om Multiple name patterns
are separated by spaces and new lines. More documenta-
tion can be found in the users guide in ‘Obfuscating V ari-
ablesin a Functional Mock-up Unit'.

| oad_resources_at _runtinme

bool ean / f al se

If enabled, then 'Modelica. Utilities.Files.loadResource'
|oads resources at runtime, else at compilation. Resources
loaded at compilation get packaged and can't be changed
later. Resources loaded at runtime can be edited and their
URI can be changed viatheir corresponding parameter.
During runtime, resource loading with the' nodel i ca'
scheme requires that all loaded libraries exist on the exact
same absol ute file path as they did during compilation.

| ocal _iteration_in_tearing

enurrer ati on /
of f

This option controls whether equations can be solved |o-
cal intearing. Possible options are: * of f* , local itera-
tions are not used (default). * annot ati on' , only equa
tionsthat are annotated are candidates. * al | ', al equa
tions are candidates.

mat hemat i cal _domai n_checks

bool ean /true

If enabled, all mathematical operators will be checked for
their correct domains and provide log messages when an
operator is evaluated outside its correct domain.

max_n_pr oc

i nteger /4

The maximum number of processes used during c-code
compilation.
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Option

Option type/
Default value

Description

normalize_mnimumtine_
pr obl ens

bool ean /true

If enabled, then minimum time optimal control problems
encoded in Optimica are converted to fixed interval prob-
lems by scaling of the derivative variables. Has no effect

for Modelica models.

obfuscat e_vari abl es

string/"’

Name pattern(s) of variables to be obfuscated by renam-
ing. Overridden by selection from keep_vari abl es and
keep_vari abl es_f r om Multiple name patterns are sep-
arated by spaces. More documentation can be found in
the users guide in ‘Obfuscating Variables in a Functional
Mock-up Unit'.

obfuscate_vari abl es_from

string/""

Path to file (absolute, relative, file URI, or modelica
URI) which contains name pattern(s) of variablesto be
obfuscated by renaming. Overridden by selection from
keep_vari abl es and keep_vari abl es_f rom Multi-
ple name patterns are separated by spaces and new lines.
More documentation can be found in the users guide in
'Obfuscating Variables in a Functional Mock-up Unit'.

propagat e_deri vatives

bool ean /true

If enabled, the compiler will try to replace ordinary vari-
able references with derivative references. Thisis done
by first finding equations on the form x = der(y). If possi-
ble, uses of x will then be replaced with der(x).

show _error_Il ocation

enuneration/
cl ass

What location information to show for errors and warn-
ings. Relative to file, class or both.

time_state_variable

bool ean /f al se

If enabled, timeistreated as aregular state variable. This
will add avariable for time and an equation der(time) =
1

variability_propagation

bool ean /true

If enabled, the compiler performs a global analysis on the
equation system and reduces variables to constants and
parameters where applicable.

variability_propagation_
al gorithms

bool ean / fal se

If enabled, the compiler includes modelicaagorithmsin
variability propagation.

variability_ propagation_
ext erna

bool ean /true

If enabled, the compiler allows external constant evalua-
tion during variability propagation.

variability_propagation_
initial

bool ean /true

If enabled, the compiler performs a global analysis on the
initial equation system and reduces initial parameters to
constants and parameters where applicable.

230



Compiler options

Option

Option type/
Default value

Description

variability_propagation_
initial _partial

bool ean /fal se

If enabled, the compiler allows partial constant evalua-
tion of function callsin initial equations during variabili-

ty propagation.

wite_ iteration_variables_
to_file

bool ean /fal se

If enabled, two text files containing one iteration variable
name per row iswritten to disk. The files contains the it-
eration variables for the DAE and the DAE initialization
system respectively. Thefiles are output to the resource
directory of the FMU.

wite_tearing_pairs_to_
file

bool ean / f al se

If enabled, two text files containing tearing pairs is writ-
ten to disk. Thefiles contains the tearing pairs for the
DAE and the DAE initialization system respectively. The
files are output to the working directory.

al gorithns_as_functions

bool ean / f al se

If enabled, convert algorithm sections to function calls.

causal _ports

bool ean /fal se

Treat top level connector variables as causal variables.
Flow and instream variables as inputs, potential and
stream variables as outputs.

del ayed_scal ari zati on

bool ean /true

If enabled, delays scalarization of parameter arrays until
C-code generation. This reduces the memory used during
transformation of the flattened tree.

di sabl e_snoot h_event s

bool ean / f al se

If enabled, no events will be generated for smooth opera-
tor if order equalsto zero.

event _i ndi cat or _scal i ng

bool ean / f al se

If enabled, event indicators will be scaled with nominal
heuristics.

experinental _enabl e_
renmovi ng_nodi fi cati ons

bool ean /fal se

Enable prototype implementation of MCP-0009 Remov-
ing modifications. Thisimplementation has known limi-
tations and likely additional bugs, use at your own discre-
tion.

experinental _enabl e_
sel ecti ve_nodel _ext ensi on

bool ean /fal se

Enable prototype implementation of MCP-0032 Selective
model extension. Thisimplementation has known limita-
tions and likely additional bugs, use at your own discre-
tion.

flatten_only

bool ean /f al se

Exit the compilation process after flattening but before
optimization of the flattened modelica code. This means
no FMU is generated. This option can be used together
with thel og_dependenci es option to exit the compila
tion process after the logging of dependencies.
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Option

Option type/
Default value

Description

fm _ports

bool ean /fal se

If enabled, XML code for FMI portsis generated.

gener ate_event _swi t ches

bool ean /true

If enabled, event generating expressions generates
switchesin the c-code. Setting thisoptiontof al se can
give unexpected results.

gener at e_sparse_bl ock_
j acobi an_t hreshol d

i nteger /100

Threshold for when a sparse Jacobian should be generat-
ed. If the number of torn variablesis|less than the thresh-
old adense Jacobian is generated.

| og_dependenci es

string/""

Log dynamic dependenciesin JSON format to the giv-
en file. Prints information on parsed Modelica files and
instantiated models in JISON format to the file with the
given (absolute or relative) filename. This option can be
used together with thef | at t en_onl y option because the
compilation processis exited after the logging of depen-
dencies.

nsl _version

enuneration/
auto

Controls what version of the Modelica Standard Library
will be automatically added to MODELICAPATH. Al-
lowed values: "auto" - All included versions will be
added. Thisisthe default. "none" - No MSL version will
be added. "3.2.3" or "4.0.0" - Only that specific version
will be added.

remove_unused_t enporari es

bool ean /true

If enabled then unused temporary variables are eliminat-
ed from the model.

source_code_fmu

bool ean / f al se

If enabled, external source code is packaged with the
FMU.

target _pl atform packages_

directory

string/""

If set, then specifices the path to the directory which con-
tains additional packages necessary for compiling to the
target platform.

treat _libraries_as_ en-
crypted

bool ean /fal se

Treat al loaded libraries as if they were encrypted. In-
tended only for testing.

cs_profiling

bool ean /fal se

Option for turning on profiling for Co-Simulation FMUs.

cs_rel _tol real /1.0E-6 Tolerance for the adaptive solversin the Co-Simulation
case.
cs_sol ver integer /0 Specifies the internal solver used in Co-Simulation. O -

CVode, 1 - Euler, 2 - RungeKutta2, 3 - Radaub.
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Default value
cs_step_size real /0.001 Step-size for the fixed-step solversin the Co-Simulation

case.

enf or ce_bounds

bool ean /true

If enabled, min / max bounds are enforced for iteration
variablesin nonlinear equation blocks.

iteration_variable scaling |integer /1 Scaling mode for theiteration variablesin the equation
block solvers: 0 - no scaling, 1 - scaling based on nomi-
nals, 2 - utilize heuristic to guess nominal based on min,
max, start, etc.

| og_| evel integer /3 Log level for the runtime: O - none, 1 - fatal error, 2 - er-

ror, 3 - warning, 4 - info, 5 - verbose, 6 - debug.

|l og_start _tine

real /-1.0E20

Time for when the user log level starts to take affect.

| og_stop_tine real /1.0E20 Time for when the user log level stops to take affect.

mat hemat i cal _domai n_ integer /-1 If enabled, this option determines how many warnings

warnings_limt from the mathematical domain checks will be printed to
thelog. A value of -1 means that thereis no limit. The
warnings count is reset after the initialization phase.

nle_active_bounds_node integer /0 Mode for how to handle active bounds: O - project New-
ton step at active bounds, 1 - use projected steepest de-
scent direction.

nl e_j acobi an_cal cul ation_ |integer /0 Mode for how to calculate the Jacobian: O - onesided dif-

node

ferences, 1 - central differences, 2 - central differences

at bound, 3 - central differences at bound and O, 4 - cen-
tral differencesin second Newton solve, 5 - central dif-
ferences at bound in second Newton solve, 6 - central dif-
ferences at bound and 0 in second Newton solve, 7 - cen-
tral differences at small residual, 8 - calculate Jacobian
externally, 9 - Jacobian compresssion.

nl e_jacobian_finite_
di fference_delta

real /1.49E-08

Delta to use when calculating finite difference Jacobians.

nl e_j acobi an_updat e_node

i nteger /2

Mode for how to update the Jacobian: O - full Jacobian, 1
- Broyden update, 2 - Reuse Jacobian.

nl e_sol ver_default_tol

real /1.0E-10

Default tolerance for the equation block solver.

nl e_solver_exit_criterion

integer /3

Exit criterion mode: O - step length and residual based, 1
- only step length based, 2 - only residual based, 3 - hy-
brid.
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nle_sol ver _nmax_residual _ real /1.0E10 Maximal scaling factor used by automatic and hybrid

scal i ng_factor

residual scaling agorithm.

nl e_sol ver_m n_residual _
scal i ng_factor

real /1.0E-10

Minimal scaling factor used by automatic and hybrid
residual scaling algorithm.

rescal e_after_singular_jac

bool ean /true

If enabled, scaling will be updated after asingular ja-
cobian was detected (only active if automatic scaling is
used).

rescal e_each_step

bool ean / fal se

If enabled, scaling will be updated at every step (only ac-
tive if automatic scaling is used).

resi dual _equation_scaling

integer /1

Equations scaling mode in equation block solvers: O -
no scaling, 1 - automatic scaling, 2 - manual scaling, 3
- hybrid, 4 - aggressive automatic scaling, 5 - automatic
rescaling at full Jacobian update

runtime_log_to file

bool ean /f al se

If enabled, log messages from the runtime are written di-
rectly to afile, besides passing it through the FMU inter-
face. The log file name is generated based on the FMU
name.

use Brent _in_1d

bool ean /true

If enabled, Brent search will be used to improve accuracy
in solution of 1D non-linear equations.

bl ock_sol ver _profiling

bool ean / f al se

If enabled, methods involved in solving an equation
block will be timed.

events_default_tol

real /1.0E-10

Default tolerance for the event iterations.

events_tol _factor

real /1.0E-4

Tolerance safety factor for the event indicators. Used
when external solver specifies relative tolerance.

nl e_brent _ignore_error

bool ean /f al se

If enabled, the Brent solver will ignore convergence fail-
ures.

nl e_sol ver _check_j ac_cond

bool ean / fal se

If enabled, the equation block solver computes and log
the jacobian condition number.

nl e_sol ver _max_iter

i nteger /100

Maximum number of iterations for the equation block
solver.

nl e_solver_nax_iter_no_ ja-

cobi an

i nteger /10

Maximum number of iterations without jacobian update.
Value 1 means an update in every iteration.
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Option type/
Default value

Description

nl e_sol ver_min_tol

real /1.0E-12

Minimum tolerance for the equation block solver. Note
that, e.g. default Kinsol tolerance is machine precision
pwr 1/3,i.e. 1le-6.

nle_sol ver_regul arization_ |real /-1.0 Tolerance for deciding when regularization should be ac-
tol erance tivated (i.e. when condition number > reg tol).

nle solver step linit_ fac- |real /10.0 Factor limiting the step-size taken by the nonlinear block
tor solver.

nl e_sol ver _tol _factor real /1.0E-4 Tolerance safety factor for the equation block solver.

Used when external solver specifies relative tolerance.

nl e_sol ver _use_l ast _
i ntegrator_step

bool ean /true

If enabled, the initial guess for the iteration variables will
be set to theiteration variables from the last integrator

step.

nl e_sol ver _use_nomi nal s_as_
fal | back

bool ean /true

If enabled, the nominal values will be used asinitial
guess to the solver if initialization failed.

time_events _default_tol

real /2.22E- 14

Default tolerance for the time event iterations.

use_j acobi an_equi l i bration

bool ean / f al se

If enabled, jacobian equilibration will be utilized in the
equation block solversto improve linear solver accuracy.

use_newt on_for_brent

bool ean /true

If enabled, afew Newton steps are computed to get a bet-
ter initial guessfor Brent.

bl ock_sol ver _experinmental _ |integer /0 Activates experimental features of equation block solvers
node
cs_experimental _node integer /0 Activates experimental features of CS ode solvers.
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Appendix C. Thirdparty Dependencies

C.1. Introduction

All dependencies needed to run OCT are bundled in the installer and listed in Section C.2.

C.2. Applications, Libraries and Python Packages in
OCT

The following applications, libraries and Python packages are part of the OCT installation.
Applications

 JDK 17.0.2

e MinGW (tdm-gcc 5.1.0)

* Python 3.7.13

. Swig3.0.8

Libraries

* Ipopt3.12.4

* boost 1.72.0

* Beaver 0.9.6.1

* eXpat2.1.0

e Minizip

* MSL (Modelica Standard Library), see Section C.3.

« SUNDIALS2.7.0

e Zlib126

+ CasADi
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Thirdparty Dependencies

Python packages

Zipp 0.6.0

xlwings 0.15.10
wheel 0.33.6
wxPython 4.0.7.post1

widgetsnbextension 3.5.1

webencodings 0.5.1
wcewidth 0.1.7
urllib31.25.3
traitlets 4.3.2
tornado 6.0.3
testpath 0.4.2
terminado 0.8.2

six 1.12.0

serpent 1.28
Send2Trash 1.5.0
scipy 1.3.1
SALib1.3.8
requests 2.22.0
gtconsole 4.5.5
pyzmg 18.1.0
pywinpty 0.5.5
pywin32 225
pywin32-ctypes 0.2.0
pytz 2019.2
pythonnet 2.4.0
python-jenkins 1.5.0
python-dateutil 2.8.0
pyseria 3.4
pyrsistent 0.15.4
Pyro4 4.76
pyparsing 2.4.2
Pygments 2.4.2
pyDOE2 1.2.1

psutil 5.6.3
prompt-toolkit 2.0.9
prometheus-client 0.7.1
pip 19.0.3

Pillow 6.2.1
pickleshare 0.7.5
pbr 5.4.3

parso 0.5.1

nose 1.3.7

nose-cov 1.6
nbformat 4.4.0
nbconvert 5.6.0
natsort 6.0.0
multi-key-dict 2.0.3
more_itertools 3.0.5
mock 3.0.5

mistune 0.8.4
matplotlib 3.1.1
MarkupSafe 1.1.1
Ixml 4.4.1
kiwisolver 1.1.0
keyring 19.1.0
jupyter 1.0.0
jupyter-core 4.5.0
jupyter-console 6.0.0
jupyter-client 5.3.2
jsonschema 3.0.2
JPypel 0.7.0

Jinja2 2.10.1

jedi 0.15.1

jdcal 1.4.1

jcc 3.5

ipywidgets 7.5.1
ipython 7.8.0
ipython-genutils 0.2.0
ipykernel 5.1.2
importlib-metadata 0.23
idna2.8

htmi5lib 1.0.1
et-xmifile 1.0.1
entrypoints 0.3
defusedxml 0.6.0
decorator 4.4.0
Cython 0.29.13
cycler 0.10.0
coverage4.5.4
cov-core 1.15.0
comtypes1.1.7
colorama 0.4.1
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https://github.com/mhammond/pywin32
https://github.com/davidhalter/jedi
https://github.com/enthought/pywin32-ctypes
https://github.com/phn/jdcal
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https://github.com/clicumu/pyDOE2
https://github.com/takluyver/entrypoints
https://github.com/giampaolo/psutil
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http://github.com/matplotlib/cycler
http://python-pillow.org
https://github.com/nedbat/coveragepy
https://github.com/pickleshare/pickleshare
https://github.com/schlamar/cov-core
https://docs.openstack.org/pbr/latest/
https://github.com/enthought/comtypes
https://github.com/davidhalter/parso
https://github.com/tartley/colorama

Thirdparty Dependencies

pandocfilters 1.4.2 chardet 3.0.4
pandas 0.25.1 certifi 2019.9.11
openpyxl 2.6.3 bleach 3.1.0
numpy 1.17.1 backcall 0.1.0
notebook 6.0.1 attrs 19.1.0

C.3. Modelica Standard Library
C.3.1. Modelica Standard Library 3.2.3

For thisrelease, Modelica Standard Library (MSL) version 3.2.3 build 3 with anumber of patches applied is used.
The patches are listed below, but can also be found on the Modelon fork of MSL.:

To the model Modelica.Blocks.Examples.NoiseExamples.Actuator WithNoise defined in Modelica/Blocks/
package.mo a StateSel ect.alwaysis added for Controller.y1. With this patch dynamic state selection is avoided.
See also the reported issue 2189 on the GitHub repository for Modelica Association.

The model Modelica.Electrical .Analog.Examples.SmpleTriacCircuit is patched to with a looser tolerance to
improve numerical stability near certain event points.

The state selection in Modelica.Magnetic.FluxTubes.Examples.Hyster esis.Hyster esisModel Comparison is
patched to improve the numerical robustness, seeissue 2248 on the GitHub repository for Modelica Association.

In Modelica.Fluid.Examples. TraceSubstances.RoomCO2WithControls the experiment tolerance istightened to
1e-008 instead of 1e-006 to avoid chattering.

In  Modelica.Magnetic.FluxTubes.Examples.Hyster esis.SnglePhaseTransformerWithHysteresisl  an initial
equation has been added in order to fully specify the initial system, see issue 3409 on the GitHub repository
for Modelica Association.

In Modelica.Electrical.Machines.Exampl es.Asynchronousl nductionMachines. AIMC_Inverter Drive the connec-
tion to ground has been rel ocated from the rectifier to the inductor in order to simplify the set of linear equations
for proper state selection.

In Modelica.Electrical.Power Converters.Examples. ACDC.Rectifier Bridge2mPul se.DiodeBridge2mPulse the
experiment tolerance is tightened to 3e-007 instead of 1e-006 to avoid infinite loops due to numerical noise.

In ModelicalMedia/packagemo array sizes are specified since OCT does not support this type
of unspecified array sizes. This affects the models ModelicaMedia Examples.ReferenceAir.MoistAir,
Modelica.M edia. Examples.ReferenceAir.MoistAirl and Modelica.Media. Examples.ReferenceAir.MoistAir2.

In Modelica/lResources/C-Sources/M odelicaStandardTablesUsertab.c it is removed weak symbol linking for
MacOS since MacOS doesn't support it. This affects the models using ModelicaStandardTabl es.
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Thirdparty Dependencies

The component m has been removed from models
Modelica.Electrical .Quasi Stationary.Multi Phase. Sour ces.FrequencySwveepCurrentSour ce and
Modelica.Electrical.Quasi Stationary.Multi Phase.Sour ces.FrequencySwveepVoltageSour ce to avoid non-identi-
cal duplicate components. See also the reported issue 4021 on the GitHub repository for Modelica Association.

With the patches listed above applied, all example modelsin version 3.2.3 build 3 of MSL simulate correctly with
OCT.

The following changes have also been applied in order to support 3D animations in Modelon |mpact:

In file MSL323/ModelicaServices/package.mo, a number of parameters/ variables have been added.

In file M SL 323/M odelicaServices/package.mo, the  eguation (%, Y, Z, ()] =
surfaceCharacteristic(nu,nv,multiColoredSurface) has been added.

Infile MSL323/M odelicaServices/package.mo, the annotation Protection(access= Access.hide) has been added.

In directory M SL 323/M odelica/Resources/Datal Shapes/Engine, the threefiles crank.glb, piston.glb and rod.glb
have been added. These are files converted from their respective dxf-format in that same directory.

In directory MSL323/Modelica/Resources/Data/ Shapes/RobotR3, the six files b0.glb, bl.glb, b2.glb, b3.glb,
b4.glb, b5.glb and b6.glb have been added. These are files converted from their respective dxf-format in that
same directory.

Several iconsin the MSL bundle of version 3.2.3 are also updated visually such that they are using a gradient fill,
this change isin line with the pull request at issue 3952.

C.3.2. Modelica Standard Library 4.0.0

For this release, Modelica Standard Library (MSL) version 4.0.0 with a number of patches applied is used. The
patches are listed below, but can aso be found on the Modelon fork of MSL:

The method Modelicalnternal_fullPathName in Modelicalnternal.c is updated according to the reported issue
issue 3660 on the GitHub repository for Modelica Association.

To the model Modelica.Blocks.Examples.NoiseExamples.ActuatorWithNoise defined in Modelica/Blocks/
package.mo a StateSel ect.alwaysis added for Controller.y1. With this patch dynamic state selection is avoided.
See also the reported issue 2189 on the GitHub repository for Modelica Association.

The model Modelica.Electrical .Analog.Examples.SmpleTriacCircuit is patched to with a looser tolerance to
improve numerical stability near certain event points.

The model Modelica.Electrical.Analog.Examples.OpAmps.Differential Amplifier is patched with an updated
nominal to improve the scaling of the problem.
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Thirdparty Dependencies

The model Modelica.Electrical.Machines.Examples.InductionMachines.IMC_DCBraking is patched to im-
prove simulation performance. Thevariablesime.ig 1] and imc.ig[ 2] now have StateSelect.always, imc.ig[ 3] has
SateSelect.never.

The following functions were made impure: real FFTwriteToFile, initializelmpureRandom and readReal Pa-
rameter in files Modelica/Math/FastFourierTransform.mo, Modelica/Math/Random.mo and Modelica/Utili-
ties’Examples.mo respectively. The reason is that they contain calls to several impure functions. See aso the
reported issue 3857 on the GitHub repository for Modelica Association.

The function getMemory in Modelica/Electrical/Digital.mo has been made impure since it contains
a cal to another impure function Modelica.Utilities.Streams.readLine. To account for this, if ini-
tial() has been replaced with when initial in both Modelica.Electrical .Digital.Memories. DLATRAM and
Modelica.Electrical .Digital.Memories. DLATROM. See also the reported issue 3855 on the GitHub repository
for Modelica Association.

In Modelica.Media.Exampl es.SolveOneNonlinear Equation.Inverse _sine the call to function print has been put
within an initial equation since print is an impure function. See also the reported issue 3856 on the GitHub
repository for Modelica Association.

In Modelica.Electrical.Power Converters.Examples. ACDC.Rectifier Bridge2mPul se.DiodeBridge2mPulse the
experiment tolerance is tightened to 3e-007 instead of 1e-006 to avoid infinite loops due to numerical noise.

The parameters Basic.LeakageWithCoefficient leakage and
Modelica.Magnetic.Quasi Satic.FluxTubes.Basic.LeakageWithCoefficient  leakage in files Magnet-
ic/FluxTubes/Examples/Basi cExamples/Quadr aticCor eAirgap.mo and Magnetic/Quasi Stati ¢/FluxTubes/Exam-
ples/Basi cExamples/QuadraticCoreAirgap.mo had their start values explicitly set to 1e-8 for numerical stability.

In Modédlica/Utilities'Examples.mo several calls to function Modelica.Utilities.Sreams.readMatrixSze have
been wrapped in pure since the function is impure.

In Modelica.Electrical.Machines.Exampl es.Asynchronous! nductionMachines.AIMC_Inverter Drive the connec-
tion to ground has been relocated from the rectifier to the inductor in order to simplify the set of linear equations
for proper state selection.

The subpackage Modelica.Clocked is currently not supported and thus has been removed.

In Modelica/Resources/C-Sources/ModelicaStandardTablesUsertab.c it is removed weak symbol linking for
MacOS since MacOS doesn't support it. This affects the models using ModelicaStandardTabl es.

In Modelica.Fluid.Examples. TraceSubstances.RoomCO2WithControls the experiment tolerance is tightened to
1e-008 instead of 1e-006 to avoid chattering.

In ModelicalMedia/packagemo array sizes are specified since OCT does not support this type
of unspecified array sizes. This affects the models Modelica.Media.Examples.ReferenceAir.MoistAir,
M odelica.Media.Examples.ReferenceAir.MoistAirl and Modelica.M edia.Examples.ReferenceAir.MoistAir2.
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Thirdparty Dependencies

e The component m has been removed from models
Modelica.Electrical .Quasi Static.Polyphase. Sour ces.FreguencySwveepCur rentSour ce and
Modelica.Electrical .Quasi Static.Polyphase. Sour ces.FreguencySweepVoltageSour ce to avoid non-identical du-
plicate components. See also the reported issue 4021 on the GitHub repository for Modelica Association.

The following changes have also been applied in order to support 3D animations in Modelon |mpact:
« Infile MSL400/M odelicaServices/package.mo, a number of parameters/ variables have been added.

e In file M SL400/M odelicaServices/package.mo, the  eguation (%, Y, Z, ()] =
surfaceCharacteristic(nu,nv,multiCol oredSurface) has been added.

« Infile M SL400/M odelicaServices/package.mo, the annotation Protection(access= Access.hide) has been added.

* Indirectory M SL400/Modelica/Resources/Data/ Shapes/Engine, the threefiles crank.glb, piston.glb and rod.glb
have been added. These are files converted from their respective dxf-format in that same directory.

* In directory MSL400/M odelica/Resources/Datal/Shapes/RobotR3, the six files b0.glb, bl.glb, b2.glb, b3.glb,
b4.glb, b5.glb and b6.glb have been added. These are files converted from their respective dxf-format in that
same directory.

Several iconsin the MSL bundle of version 4.0.0 are also updated visually such that they are using agradient fill,
this change isin line with the pull request at issue 3952.

C.4. Additional Libraries in OCT

The following libraries are part of some builds of the OCT installation on Windows.
Libraries

e gson 2.89

C.5. Math Kernel Library (MKL)

Note that the generated FMUs and the solvers connected via the MATLAB® interface as well as the Python
interface uses linear agebra functionality from Intel's Math Kernel Library (MKL). This means that there may be
cases where the results of a solve/simulation can vary slightly between runs. To understand why this may occur
and how to mitigate it, please see Obtaining Run-to-Run Numerical Reproducible Results.
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Appendix D. Using External Functions
In Modelica

D.1. Introduction

External functions to a Modelica model is described by the language specification (3.2r2 Section 12.9 External
Function Interface). Thisappendix isintended to describetool specific behaviour and common problemsin relation
to the external functions. OCT supportsinterfacing with both C and FORTRAN 77 functions.

D.2. External objects

The variability of external objects will be interpreted as parameter, even if the component is not declared with a
variability prefix. Thisisdueto thefact that the constructors should only be called once and adiscrete or continuous
external object would have to call its constructor many times. An external object may be dependent on fixed false
parameters. In that case the constructor will be called during the solving of theinitial system. External objects are
not allowed in algebraic loops. If that is the case an error will be given during compilation.

D.3. LibraryDirectory

In addition to the base directory specified by the LibraryDirectory annotation the compiler looks for libraries in
<base>/<arch> and <base>/<arch>/<comp> with higher priority for the more specific directories. If the function
is intended to be used on multiple platforms or with multiple c-compilers there needs to be a specific version of
thelibrary file for each intended use. For example, if alibrary isto be used on both 32 and 64 bit windows, using
both gcc and other ¢ compilers, one would have to add several versions of the library. Each compiled specifically
for each platform and compiler combination. Note that the version of the compiler is also specified, since different
versions of the same compiler could be incompatible.

<base>/wi n32/ gcc472/
<base>/ wi n64/ gcc472/

D.4. GCC

When compiling with GCC we use the -std=c89 flag. This means any header file included must conform to the
€89 standard. A common issue is comments. c89 does not allow "//" comments, Only "/* */". When the header file
include "//" comments the compilation will fail. The error message usually 1ooks something like this:

sources/ Test _Test1l funcs.c:4:1: error: expected identifier or '(' before '/' token
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D.5. Microsoft Visual Studio

For alibrary built with Microsoft Visual Studio (VS) to be compatible with OCT it needs to be linked with the /
MT option (as opposed to /MD). This will enable the static runtime linking which makes sure the corresponding
V Sruntime codeisincluded in the FM U, rather than depending on aspecific dll from aV Sredistributable package
to be installed. When the library was linked using /MD the compilation will fail. The error message usually looks
something like this:

LINK : warning LNK4098: defaultlib ' MSVCRT' conflicts with use of
ot her |ibs; use /NODEFAULTLIB:Iibrary

MSVCRT. | i b(MBVCR120.dl ) : error LNK2005: _printf already defined
in LIBCM. |ib(printf.obj)

When using V'S the corresponding directories are searched when looking for included libraries.

<base>/wi n32/vs2012/
<base>/ wi n64/vs2012/

OCT also alow for tool specific libraries to be provided in <base>/<arch>/<comp>/oct. Thisis useful when the
library isintended to be used in multiple tool swhich require specific tweakswhich are not compatible, for example,
linking options.

<base>/w n32/vs2012/ oct/
<base>/ wi n64/vs2012/ oct/
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Appendix E. Release Notes

E.1. Release notes for the OPTIMICA Compiler Toolkit
version 1.44

E.1.1. Compiler Changes

Important improvements to the compiler:

» Added an error for use of function, package or operator as atype for components.

» Added support for the unbounded attribute for Real variables.

 Changed such that nominals of continuous states now can depend on theinitial system.
The release contains a number of bug fixes to the compiler, among them:

» Resolved a bug with optimization of records which caused a crash if the components of type equivalent records
were of different orders.

« A warning for missing binding expression should no longer be incorrectly reported for fixed=false array param-
etersof size 0.

» Resolved an issue with the lookup of redeclared classes that could result in aLOOKUP_NOT_FOUND error.
Deprecations

» Thesolver 'minpack’ for compiler options'init_nonlinear_solver' and 'nonlinear_solver' is now deprecated. The
deprecation will be changed to aremoval in version 1.48, use solver 'kinsol' instead.

» APl methods experimental _getClassinConstrainedbyClause and experimental _hasConstrainedbyClause are
now deprecated, use getConstrainingClass instead.

E.1.2. APl Improvements
Important improvements to the compiler API:

 Changed how conversion messages from libraries are presented for elements that cannot be automatically con-
verted.

» Added getConstrainingClass to InstanceClass and I nstanceComponent which returns the constraining class of
that element.
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» A library conversion should no longer crash when converting a modifier without a value, or when applying an
empty conversion script.

 Fixed an issue with how alibrary conversion updates modifiers for class redeclares.

E.1.3. Runtime Improvements
Important improvements to the simulation framework:
 Improved the logging of events so that the expression of the event is added to the log.

« Improved the logging of assert events to also include the time of the event and the conditional expression that
triggered the event.

Runtime bug fixes:

« Fixed abug where mathematical domain checks would not raise warnings for (non square-root) powers of neg-
ative numbers.

E.1.4. Optimization Improvements

 Improved support for external objects by allowing strings and arrays in the constructor function.

E.1.5. Python Packages Improvements

The following fixes and additions have been made to the DynamicDiagnostics package:

» Added the function plot_order_vs timeto plot the order of solver(CVode only) over time.
* Madethetime interval parameter availableto all plotting functions.

* Fixed abug where the upper limit of time_interval was not used correctly.

» Added marker option to plot_step_size vs timeand plot_order_vs time.

e Added the function get events details to retrieve detailed event information and also the function
print_event_details for printing of these.

The Assimulo version has been updated from 3.3 to 3.4.1, this entail s the following changes:
» The Radau50DE Fortran implementation has been removed.
* Fixed an issue where RadauSODE simulation would not stop when a set time limit has been exceeded.

* Fixed anissue where opty['Radau5ODE_optionsT[ atol'] would receive (machine precision) sized changeswith
repeated solver calls and events.
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» Added support for rtol = 0 and rtol vectors for CVode, without sensitivites. If used via pyfmi, the valuesin an
rtol vector need to be equal except for zeros.

The PyFMI version has been updated from 2.9.8 to 2.10.3, this entails the following changes:
» Cadllsto get_(real|integer|boolean|string) with empty lists as arguments no longer trigger a call to the FMU.

» Removed deprecated functionality for the following classes pyfmi.fmi.FMUModel CS1, FMUModel ME1, FMU-
ModelC®2, FMUModelME2, FMUModelME1Extended. Note that this affects objects created from load_fmu,
in particular for removed arguments:

» Function get_log_file_name, use get_log_filename instead.
» Function set_fmil_log_level, use set_log_level instead.
» Argument path, use fmu instead.
» Argument enable logging, use log_level instead.
* Argument tStart, use start_time instead.
» Argument tStop, use stop_time instead.
» Argument SopTimeDefined, use stop_time_defined instead.
» Argument tolControlled, use tolerance_defined instead.
» Argument relativeTolerance, use tolerance instead.
* Attribute version, use get_version function instead.
* Fixed acrash when using ExplicitEuler with dynamic_diagnostics on models with events.

e Changed Jacobian to wuse nominals retrieved via fmu.nominals continuous states instead of
fmu.get_variable_nominal (valueref).

» Maformed log messages no longer trigger exceptions. Troublesome characters are replaced with a standard
replacement character.

» Absolute tolerances cal cul ated with state nominals retrieved before initialization will be recalculated with state
nominals from after initialization when possible.

» Added method to retrieve the unbounded attribute for real variables: get_variable unbounded (FMI12 only).

 For unbounded states, the simulate method attempts to create a vector of relative tolerances and entries that
correspond to unbounded states are set to zero. (FMI12 ME only)

246



Release Notes

E.2. Release notes for the OPTIMICA Compiler Toolkit
version 1.42.1

E.2.1. Compiler Changes

This release contains alicense integration update.

E.3. Release notes for the OPTIMICA Compiler Toolkit
version 1.42

E.3.1. Compiler Changes
Important improvements to the compiler:

 Added support for compiling with Visual Studio 2022 versions.

E.3.2. APl Improvements

I mportant improvements to the compiler API:

« Added method getClassModification for getting the class modification of a modifier.

* Fixed an issue where getting sizes that depend on function calls to missing functions would throw exceptions.

* Fixed an issue with an error message not reporting the correct class name for classes that could not found.

E.4. Release notes for the OPTIMICA Compiler Toolkit
version 1.40

E.4.1. Compiler Changes

Important improvements to the compiler:

« The compiler option generate_mof_filesis now deprecated, use generate_html_diagnostics instead.
« Added check that binding equations for constants and parameters are of an appropriate variability.
« Updated diagnostics for missing inner components to use missinglnnerMessage annotation.

» Added compliance checks for use of operatorsinitial, sample and delay in functions.
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Added error checks for use of operatorsinitial, terminal, sample and delay in functions.
The Java (OpenJDK) version bundled with Windows binary installers has been updated to 17.0.2. from 11.0.2.

Added support for compilation of Windows FM Usfrom CentOS. Usage and limitations are described in the new
UsersGuide chapter Cross-platform generation of FMUs.

Updated third-party dependency gson from version 2.8.5 to 2.8.9to resolve a detected vulnerability issue.

The release contains a number of bug fixes to the compiler, among them:

Fixed NoSuchElement exception (and stack trace) in when-construct.
Fixed a crash when evaluating global constant records inside functions.

Temporary variables generated by the compiler, that were erroneously visible in the model description XML,
are now hidden.

Warnings informing about filtered warnings can be filtered with the identifier FILTERED_WARNINGS.

Warnings that could not be filtered, such as UNUSED_GLOB_PATTERN, can now be filtered with the
filter_warnings option.

Added missing support for passing arrays to the loadResource function and built-in operator change.
Fixed incorrect default value for option html_diagnostics_contents, it was full instead of statistics.

Fixed aNullPointerException that occurred when transferring to CasA Di with option generate_html_diagnostics
enabled.

Fixed a code generation issue related to accessing sub-components of global record constants.

Compiling with option generate_ode_jacobian now properly applies corresponding derivative function when
zeroDerivative modifiers exist within the annotation.

Fixed an issue that caused the FMU model description to have variables with variability=constant and
initial=calculated, which is not avalid combination.

Dependencieslisted with option event_indicator_structure now include solved variables used in equation blocks.
Fixed bug where a missing short class base class could lead to a crash rather than an error message.
Fixed crash in function inlining that could happen when an argument was an empty array.

Fixed issues with compiler state being incorrectly restored after afailed compilation.
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 Fixed and improved the error check for expandable connectors being incorrectly connected to non-expandable
connectors.

E.4.2. APl Improvements
Bug fixes to the compiler API:
* Fixed incorrect source text representation of for-expression.

» Fixed alibary conversion error check that could cause errors when a component has been renamed to a name
that already exists in one of the base classes.

 Fixed abugwith getLatestModifier causing modificationsfrom some base classesto beincluded for components.

* Fixed abug where getVisibilityPrefix could give the wrong result for redeclared elements.

E.4.3. Runtime Improvements
Important improvements to the simulation framework:

» Improved the chattering warning in the simulation logfile. It now displays all Modelica expressions that cause
chattering at a specific point in time, this requires the log level to be at least warning.

» Added warningto simulation logfilethat listsall iteration variableswith missing start valuesin anonlinear block.

» Added errorto ssimulation logfilein case of block initialization failure, that list all iteration variableswith missing
start values in anonlinear block.

* Added Radau5 as Co-Simulation solver, select by compiling with compilter option cs_solver set to 3, or by
setting the FMU variable _cs_solver to 3.

Runtime bug fixes:

* Fixed issueswhere event detection and order selection in CVode Co-simulation FMUs could slightly differ after
setting an FMU state.

* Fixed an issue where setting an FMU state did not correctly restore all internal nonlinear solver tolerances.

* Fixed acrash that could occur when setting an FMU state created using a different instance of the same FMU.

E.4.4. Python Packages Improvements
The Python version bundled with the Windows installer has been upgraded from Python 3.7.4 to 3.7.13.

The Assimulo version has been updated from 3.2.9 to 3.3, this entail s the following changes:
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» Changed the name of opty'Radau5ODE_options]['solver'] to opty'RadauSODE_options]['implementation’],
where "opts=fmu.simulate_options()".

e Added support for sparse linear solver in RadauSODE. Select via opty'RadausODE_options]
['linear_solver'|="SPARSE' (default ='DENSE"), additionally requires setting opts[‘'with_jacobian']=True, where
"opts=fmu.simulate_options()". Only available for opts'RadausODE_options]['implementation’]='c' (default)

The PyFMI version has been updated from 2.9.7 to 2.9.8, this entails the following changes:

» Removed some DeprecationWarnings.

E.4.5. Compliance

The following Modelon libraries are compatible with OPTIMICA Compiler Toolkit version 1.40:
 Airconditioning Library 1.25

* Aircraft DynamicsLibrary 1.8

* Electrification Library 1.8

» Engine Dynamics Library 2.10
 Environmental Control Library 3.14
* Fuel Cdll Library 1.16

e Fuel System Library 5.3

* Heat Exchanger Library 2.10

* HydraulicsLibrary 4.18

* Hydro Power Library 2.15

 Jet Propulsion Library 2.5

 Liquid Cooling Library 2.10

* Pneumatics Library 2.14

e Thermal Power Library 1.25

» Vapor Cycle Library 2.10

* Vehicle Dynamics Library 4.2
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E.5. Release notes for the OPTIMICA Compiler Toolkit
version 1.38.2

E.5.1. APl Improvements

Important improvements to the compiler API:

* Fixed acrash with getLatestModifier when working with some redeclared full classes.

E.6. Release notes for the OPTIMICA Compiler Toolkit
version 1.38.1

E.6.1. APl Improvements

Important improvements to the compiler API:

« Fixed abug with getLatestModifier causing modificationsfrom some base classesto beincluded for components.

E.7. Release notes for the OPTIMICA Compiler Toolkit
version 1.38

E.7.1. Compiler Changes
Important improvements to the compiler:
» Added description to event indicator variables. The description shows the event generating expression.

» Improved the duplicated components check so that it now points to the extends clause where the duplicated
component isinherited in the checked model.

» Improved error message when linker failsto find arequired library.

The release contains a number of bug fixes to the compiler, among them:

« Fixed erroneous balancing related error messages emitted from unbalanced componentsin partial instances.
 Fixed so local balancing check considers the Modelon connector vendor annotation "isTopLevel”.

» Fixed exception that could occur when inlining functions in encrypted models.
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* Fixed so that the extent of a class can be inherited if alocal coordinate system without an extent is defined.
« Fixed so forward slashes are used as path separator when creating FM Us.

* Patched the provided MSL with afix to avoid non-identical duplicate components, according to PR 4022 on
ModelicaStandardLibrary GitHub.

E.7.2. APl Improvements
Important improvements to the compiler API:
» APl method checkClass how checks for incorrect choices annotations.

« Connector SVG metadata now includes port sizes and is generated for all connectors with a placement when
generate svg_metadata _tag is used.

* Added a new method getL atestM odifier to InstanceClass and I nstanceComponent that finds the latest modifier
that modifies the class or component.

» Added a new method canGetlnstanceClass() to check if a element can be obtained correctly.

« Added API option api_allow_missing_elements. When disabled the API will throw an error when trying to
traverse a class extending a missing class.

E.7.3. Python Packages Improvements

The file startup.py has been removed together with several minor improvements to both pymodelica and pyj-
mi. For pymodelica, the exception JError has been removed and a new exception PyModelicaException has
been added which al other inherit from. Some standard Python exceptions that were raised by pymodeli-
ca have now been replaced with module specific ones. The object pymodelica.environ has been moved to

pymodelica.compiler_environment.environ but is still usable as pymodelica.environ. We recommend users of this
to update their code to import it instead from pymodelica.compiler_environ.

E.7.4. Runtime Improvements

The release contains a number of bug fixes to runtime, among them:

E.8. Release notes for the OPTIMICA Compiler Toolkit
version 1.36.1

E.8.1. Compiler Changes

The release contains a bug fix to the compiler:
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Resolved an issue with undefined references in  source code FMUs that invoked
Modelica.Utilities.Files.|oadResour ce.

Added option package _html_documentation. When enabled all generated HTML diagnostics will be packaged
inthe FMU.

Added option html_diagnostics _contents. Its value specifies what diagnostics content will be generated. In ad-
dition to model statistics, new content choices are build information and model documentation.

E.9. Release notes for the OPTIMICA Compiler Toolkit
version 1.36

E.9.1. Compiler Changes

Important improvements to the compiler:

Added compiler options for skipping parameters from the constant_parameters option.

Added support for ExternalObject components without binding equations when the constructor has a binding
equation for every input.

Added support for runtime resolving with Modelica.Utilities.Files.loadResource. Thisis controlled viathe new
option load_resources at_runtime.

Stricter checking of derivative annotations, controlled by the new option check derivative annotations.
Currently this options defaults to false, unless generate block jacobian is enabled. Use of the
check _derivative_annotations option is recommended as it may reveal errors in models that were previously
undetected. We plan to change the default of this option in afuture release.

Changed so dependent parameters only turn constant if the entire binding equation will be constant when using
constant_parameters.

The start value is how used to turn parameters in to constants when there is no binding equation when using
constant_parameters.

Improved symbolic elimination of variables and equations in conjuction with a factor of zero.

Allowed the MSL distributed with OCT to be separated from the distribution (and e.g. loaded from another
location on the filesystem). However, doing so will make compiler option msl_version behave asif it was set
to value none.

The release contains a number of bug fixes to the compiler, among them:

The compiler would crash for some models involving overconstrained connectors.
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Thelocal balancing check did not count the componentsinside of multi-dimensional array components correctly.
Relaxed error check to allow non-parameter expressionsin external object constructor arguments.

Fixed bugs with how the the balance check counts equations for variables given values with modifications.
Fixed a problem with how folders are created during compilation.

Fixed a bug with how the balance check counts components and equations in zero or unknown sized record
arrays.

Fixed the bug that short classes extending partial models were not also considered partial.

The compiler used to always link with ModelicaExternalC from Modelica 4.0.0, even when not specified by
annotations in external functions. For backwards compatibility, the compiler will still try to link with Modeli-
caExternalC, but only when Modelica is specified in the uses-annotation, and then with the loaded Modelica
library. Thisis non-standard behavior that may be changed in the future.

The compiler used to always link with ModelicaSandardTables, and to include ModelicaandardTables.h.
Thisisno longer the case, and now needs to be explicitly specified in the same way as for other external code.

Resolved an issue where an impure function was not properly inlined in some cases.

Patched the provided M SL4 with afix for Modelicalnternal _fullPathName according to PR 3663 on Modelica-
StandardLibrary GitHub.

Fixed bug which caused exception when printing dynamic state blocks in the debug log for encrypted libraries.
Fixed a bug where certain system locales would prevent the license check from passing.
Fixed issue with Modelica function getlnstanceName when compiling models with experiment modifiers.

Fixed compiler crash when using functions inheriting from built-in functions.

E.9.2. APl Improvements

Important improvements to the compiler API:

Added awarning for when extends in a package cannot be placed in agiven order due to limitations.

Fixed a bug where convertLibrary failed if multiple versions of the same library were on MODELICAPATH.

E.9.3. Python Packages Improvements

The PyFMI version has been updated to 2.9.7, this entails the following changes:

Added an argument to ResultDymolaBinary to allow for reading updated data from the loaded file.
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» Added option synchronize_simulation to allow for synchronizing simulation with (scaled) real-time.
» Added setup.cfg that lists all Python package dependenciesin order to run PyFMI.

» Resolved an issue that would occurr when reading large result files or streams causing the data to be corrupt
due to an integer overflow.

E.9.4. Runtime Improvements
The release contains a number of bug fixes to runtime, among them:

» Added fallback for block-initialization in dynamic simulation: If initialization of ablock in the dynamic system
fails with the solution of the initial system, we re-attempt initializing that block with the start values of the
corresponding iteration variables.

 Fixed problem with computing the directional derivatives in blocks of equations that only contains discrete
variables.

* Fixed problem where the MSL function full PathName could lead to segmentation fault.
* Fixed segmentation fault with M odelicaM essage when called outside of its validity range.

» Removed an unnecessary model evaluation when inputs where being retrieved from the model.

E.10. Release notes for the OPTIMICA Compiler Toolkit
version 1.34.2

E.10.1. Compiler Changes
The release contains a bug fix to the compiler:

* Fixed bug where a class that has an Icon or Diagram annotation, but no coordinate system defined in it, would
not use one from an inherited class.

E.11. Release notes for the OPTIMICA Compiler Toolkit
version 1.34.1

E.11.1. Compiler Changes
The release contains a number of bug fixes to the compiler, among them:;

* Fixed abug where using msl_version="none" could cause C compilation error.
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E.11.2. APl Improvements

Important improvements to the compiler API:

e Added the method API.clearModelicaPath for removing all paths added to the MODELICAPATH with
API.addM odelicaPath.

E.12. Release notes for the OPTIMICA Compiler Toolkit
version 1.34

E.12.1. Compiler Changes
Important improvements to the compiler:
 Improved handling of duplicate variables.

» Added compiler option allow library version_mismatch that converts errors due to library version mismatch
to warnings.

» Add support for compiling with Visual Studio 2019 versions.

» Improved error check for connect clauses to give more detailed error messages and made it slightly less strict
in partial classes.

» Made handling of MODELICAPATH consistent between different ways of using the compiler.

» The environment variable MODELICAPATH is no longer read, instead the value must be passed as an argu-
ment.

» The option mdl_version can be used to control what versions of MSL among those included are added to
MODELICAPATH; al, none or a specific version.

» Some icons in the Modelica Standard Library bundled with OCT have received updates, where they now are
using gradient fills. See Section C.3 for more information.

E.12.2. APl Improvements

Important improvements to the compiler API:

» Changed so getComponentClass() for InstanceComponent and getlnstanceClass() for InstanceExtends always
throws an exception if the the class cannot be found.

» Added support for evaluating Enum literalsin both SourceTree and InstanceTree.
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» Added support for evaluating non-literal expression in Modifiers and Annotations from the InstanceTree.
« Added method for getting the diagram of a connector or expandable connector as an SV G image.

* Fixed issue with generation of SVG icons for component arrays.

* Fixed bug with external functions resulting in an invalid algorithm being returned by the API.

 Fixed a bug with getDeclaredSubscripts() for redeclared multi-dimensiona array components resulting in an
IndexOutOf BoundsException.

E.12.3. Python Packages Improvements
The Assimulo version has been updated from 3.2.7 to 3.2.9, this entails the following changes:

e Added a C implementation of the RadauSODE solver (previously: Fortran). One can select the solver via
"optg['RadauSODE_options]['solver]='c" (or 'f', default="c"), where "opts=fmu.simulate_options()".

E.12.4. Runtime Improvements

Important improvements to Runtime;

« If NonLinearConvergence error in block, we added logging for ivs, residuas, condition number and number
of iterations.

» Added logging if asimulation fails due to non-convergence in a block with zero rows/columnsin the jacobian.

E.13. Release notes for the OPTIMICA Compiler Toolkit
version 1.32.1

E.13.1. Compiler Changes

This release contains a bug fix to the compiler:

* Fixed an issue where changing some options would not take effect, if done in between two compilations using
the same API object when compiling in single process mode.

E.14. Release notes for the OPTIMICA Compiler Toolkit
version 1.32

E.14.1. Compiler Changes

Important improvements to the compiler:
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Added support for MSL 4.0.0. Note that the sub package Modelica.Clocked is not yet supported and is therefore
stripped out. Compiling with MSL 3.2.3 is till possible and can be done by changing the compiler option
msl_version and/or utilizing a"uses"-annotation.

Versions of libraries can be selected with "uses'-annotation if multiple versions exist on MODELICAPATH.

Updated the HTML diagnostics generated when compiler option generate_html_diagnostics is enabled. The
pages contain more data, and the presentation has been improved. Thereisanew page called blocklnfo.html that
contains information on each block within the model.

Improved the error message displayed when aredeclaration is missing elements from a constraining type.

Changed such that smooth(0, expr) generates event indicators but no event switches within internal blocks. As
a consequence it behaves as noEvent except for the generated event indicators. The behaviour of actual Sream
has not been affected by this change.

Simulation of FMUs will now attempt new fallbacks when convergence fails:

afallback that perturbs the current point and improves the worst residual when the non-linear solver fails and
the ODE solver step issmall.

afallback ignoring min/max bounds for iteration variables in non-linear systems, only checking bounds com-
pliance for final solution.

afalback for infinite loops during simulation if the iteration variables are very close to each other.

afalback when aresidual is not improved enough and we are not the taking full Newton step in the non-linear
solver.

Important improvements to the support of CasADi:

Models with generated stream variables for encrypted libraries can now be transferred to CasADi.

Resolved an issue when the annotation HideResult was set to true which prevented CasADi transfer when an
encrypted library was |oaded.

Equations and variables introduced by inlining now have correct visibility and can be transferred to CasADi.

Equations added by the compiler option state _initial_equationsnow have correct visibility and can betransferred
to CasADi.

The release contains a number of bug fixes to the compiler, anong them:

Source code FMUs no longer include the filenames of temporary files used for constant evaluation.

Start and nominal attributes set via type modifications now have lower priority than those set via component
modifications. This priority is used when selecting attributes for alias variables.
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Resolved a crash with Linux FMUs using Modelica.Utilities.System.getTime.
Resolved an issue where differentiation of an external function could cause a crash.

Resolved an issue with an internal annotation used for imported FMUs where there would be a false error
regarding unlocated resource files during simulation.

Removed incorrect warning about missing binding equation for outer parameters and constants.

E.14.2. APl Improvements

I mportant improvements to the compiler API:

Added an editing operation that can re-order the elementsin a SourceClass.
Added support for renaming components and classes to the same name as an enclosing class.
Added a method isTopLevel ClassinFile for SourceClass.

Added an overload of checkSyntax that can check the input as a class element (previously only asfile).

The release contains a number of bug fixes to the compiler API, among them:

Fixed a crash during library conversion due to a bug with value lookup from inside array subscripts.

Resolved a bug with how the local balance check counts unknowns and equations in models with arrays with
unknown or zero size.

The local balance check now computes the correct number of unknowns and equations for connector inputs and
flow variables from outer components.

Using renameClass should now correctly reflect the name change corresponding package.order file.
Fixed an issue with positional information for syntax errors.
Fixed an issue where API.getTopLevel SourceClasses would throw an exception.

Fixed a issue where adding an element followed by renaming a library without a order file could cause the
created order file to not be moved.

Fixed an issue with loading the same library from both a symbolic link and the real path.

Fixed bug with CopyClass crashing when trying to copy afile consisting of only a short class.

E.14.3. Python Packages Improvements

PyFMI has been updated from version 2.8.10 to 2.9.5, thisincludes the following changes:
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» Diagnostic data is now saved in the binary result file instead of the log file. Additionally more data can be
accessed if the simulation option logging is enabled.

 Attemptsto get continuous stateswhen there are no such stateswill now returnfmi2_status ok instead of an error.

Assimulo has been updated from version 3.2.5 to 3.2.7, this resolves minor deprecation warnings visible with
newer versions of Python.

Steady State has been updated with the following changes:

* Intermediate points for both cancelled and failed simulations can now be saved after each iteration by enabling
the steadystate solver option save_last_integration_point.

E.14.4. Compliance

The following Modelon libraries are compatible with OPTIMICA Compiler Toolkit version 1.32:
 Airconditioning Library 1.23

« Aircraft DynamicsLibrary 1.6
 Electrification Library 1.7

e Engine Dynamics Library 2.8

» Environmental Control Library 3.12
« Fuel Cell Library 1.14

* Fuel System Library 5.1

» Heat Exchanger Library 2.8

* Hydraulics Library 4.16

» Hydro Power Library 2.14

 Jet Propulsion Library 2.3

 Liquid Cooling Library 2.8

e Pneumatics Library 2.12

e Thermal Power Library 1.23

* Vapor CycleLibrary 2.8
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Vehicle Dynamics Library 4.0

E.15. Release notes for the OPTIMICA Compiler Toolkit
version 1.30

E.15.1. Compiler Changes

Important improvements to the compiler:

Updated error message displayed when line-search fails for nonlinear blocks.
Event indicators are no longer generated for expressions in when clauses.

Errors and warnings now reported with location in enclosing class rather than file when possible. Option
show_error_location to restore old behavior added.

The release contains a number of bug fixes to the compiler, among them:

Modelswith fixed parametersthat have start values but no binding equations now use the start value asabinding
equation.

Accesses to arrays that |eave some indices unspecified are now correctly handled.
Fixed bug where source code FMUs would not list split .c files.

Fixed name lookup from within size specifiersin component redeclares.

Fixed issue with Lapack that could result in segmentation faults on Linux.

Fixed bug where partial indices of arrays were not correctly type-checked.

Fixed a bug where values from the record constructor did not propagate into the size of aarray.

E.15.2. APl Improvements

Important improvements to the compiler API:

Fixed copyClass so that subpackage structure is retained. Copying a structured package will no longer convert
the copy to an unstructured package.

Added editing methods for removing, setting and adding both normal and initial-equations in the source tree.
Perform more local error checks in InstanceClass.checkClassLocal.

Added amethod for checking if an equation isan initial equation.
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» Added methods for obtaining all algorithm from classes and components in both Instance and Source tree.

Added a method for checking if an algorithm is an initial agorithm.

Added editing methods for removing, setting and adding both normal and initial-algorithm in the source tree.

 Fixed an issue where accessing libraries with syntax errors could cause an exception if the library name had
aversion number.

The release contains a number of bug fixes to the compiler API, among them:

 Improved handling of inherited graphics annotations in connectors.

* Fixed bug awhere copyClass would fail for models containing numbers prefixed with a'+' sign.
« Fixed bug that caused redeclare extends clauses to lose their formatting when saving.

* Fixed an issue where API.checkClass would report errors unrelated to the model being checked.
* Fixed several bugs for editing operations requiring updates to symboalic links.

« Fixed bug where InstanceClass.getAllMatchingRedecl areChoices would cause an exception if aloaded library
had syntax errors.

E.16. Release notes for the OPTIMICA Compiler Toolkit
version 1.28.4

This release contains a bug fix to the compiler API:

 Saving changesto afile that is a symbolic link will no longer replace the link with a new file.

E.17. Release notes for the OPTIMICA Compiler Toolkit
version 1.28.3

This release contains a bug fix to the compiler API:

* Fixed bug where moving a class could cause syntax errors in accesses to the moved class.

E.18. Release notes for the OPTIMICA Compiler Toolkit
version 1.28.2

This release contains bug fixes to the compiler API:
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* Fixed bugs related to setting source text for classes with syntax errors.

E.19. Release notes for the OPTIMICA Compiler Toolkit
version 1.28.1

This release contains bug fixes to the compiler API:
* Fixed bug where copying a class containing named function call arguments would cause exceptions.

« Fixed bug where editing a class after fixing a syntax error would cause exceptions.

E.20. Release notes for the OPTIMICA Compiler Toolkit
version 1.28

E.20.1. Compiler Changes

Important improvements to the compiler:

» Added support for the inver se annotation.

» Changed the default target to ME2.0 for both command-line and API calls.
 Improved the C code-generation to improve simulation performance.

» Added support for the HideResult annotation.

» Added anew ODE solver to CS FMUs, a second order Runge-K utta method.

» Improved error message when index reduction fails due to the need of differentiating an equation that uses an
input.

» Enabled BLT table diagnostics for encrypted models.

» Added support for checking if a model is locally balanced. This is limited to models without expandable or
overdetermined connectors.

Important improvements to the support of CasADi:
« The names of inputs and outputs in functions are now transferred to Casadi.

« Functionsin if-statements are now using CasADis conditional operator for MXFunctions instead of the condi-
tional operator for MX.
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Several minor performance improvements.

The release contains a number of bug fixes to the compiler, among them:

Fixed a stack overflow error that would occur with conversion scripts on large models.

Fixed a conversion script limitation which caused some components in redeclared classes to not be updated.
Fixed a bug that would result in UnsupportedOper ationException.

Fixed a stack overflow error when too many scalars were assigned in the same algorithm or function call.

Fixed bug where using multi-byte characters in a description string could cause an invalid FMU if the Java
default character encoding was not UTF-8.

Fixed so that derivative variable inheritsits visibility from where it is derived from.

Fixed so that event indicator variables (added with the event_output_varsoption) are shown in encrypted models.
Fixed so that the compiler finds the correct folder for external libraries on linux based on gcc version.

Fixed a scalability bug. Thisfix results in alarge compilation time decrease for specific models.

Fixed an issue with OCT on MATLAB® unableto find the gcc compiler.

Fixed an issue where bltTable.html was generated even though diagnostics limit was exceeded.

Fixed a bug that could cause an unbalanced system after optimization.

Fixed abug wherethe optionsconvert_to_input and delayed scalarization could cause acrashif the glob pattern
matched an array variable.

Fixed a bug so that equations and variables are exposed when they are allowed for encrypted models.

Fixed a bug where the compilation result could differ with and without encryption for the same model.

E.20.2. Python Packages Improvements

Bug fixes to Python packages:

Fixed an exception that would occur when getting an event summary in DynamicDiagnostics in the case where
only time events are present.

» Added support getting the Hessian of the outputs in Model Problem.

Fixed abug where LogViewer in the steadystate package would fail to retrieve jacobians for very large models.
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The Assimulo version has been updated from 3.2.4 to 3.2.5, this entail s the following changes:

Additional Fortran compile flags can now be provided during setup.

Fixed an issue that caused exceptions during setup when Sundials was not found.

The PyFMI version has been updated from 2.8.3 to 2.8.10, this entails the following changes:

Added support for writing result data to streams.

Fixed segfault when storing data from models with a huge number of variables.

Loading of FMUs can now be done from an unzipped folder if the argument allow_unzipped_fmuis set to True.
The argument path to load_fmu and the different FMI-classes is now deprecated

Added support to log to streams via the keyword argument log_file_name. This is supported for all the FMI-
classes as well asthe function load fmu.

Improved performance of the Master algorithm.

Updated exception types when loading of an FMU fails.

Added safety check for updated binary files which can cause issues.

A matrix of all the results from abinary file can now be retrieved even if delayed loading is used.
The written binary file is now aways consistent, i.e. if asimulation aborts, it can still be read.

Changed default loading strategy for binary files, now the trajectories are loaded on demand instead of all at
the sametime.

Updated Master agorithm options documentation and fixed result file naming.

Fixed block_initialization in Master algorithm when using Python 3.

Fixed an issue where the attribute initial was not properly set on ScalarVariable2.

Fixed an issue with get_variable_nominal that would occur when specifying the value reference of avariable.
Added a utility function to determine if the maximum log file size has been reached.

Added support for parsing boolean valuesin the XML log parser.

Added support for option logging for different ODE solvers.
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E.20.3. APl Improvements

I mportant improvements to the compiler API:

Changed EditingManager.copyClass() to preserve all provided formatting information including comments and
indentation. Before default formatting was used and comments discarded.

Added method SourceClass.getSyntaxErrors() to get alist of syntax errors.

Implemented getSour ceText() and setSourceText() on S cBadLibNodes and ScBadClassDecl to alow repair of
syntax errors.

Added an editing operation setComponentTypeSpecifier for setting the type of a source component.
Libraries with asyntax error in atop leve file can be loaded without getting an exception.

Added an editing operation setDescriptionString for setting the description string for classes, components and
imports.

Added amethod SourceClass.save() for saving an individual changed class. Thisis possible aslong as no refac-
toring which requires saving everything have been made.

Added a method getSourceClasseslnFile for getting the top-level classesin a Modelica source.

Added methods checkClass and checkClassLocal for performing error checks on an InstanceClass.

The release contains a number of bug fixes to the compiler API, among them:

Fixed bugs when editing libraries loaded using symbolic links.
Fixed bug where it was not possible to print redeclare choice annotationsin encrypted libraries.

Fixed a library conversion bug that could erroneously report an error for class redeclares when base class is
redeclared.

Fixed an issue with obtaining modifications from the InstanceComponents in an array.
Fixed bug with variability prefixes which caused protected elements in a component to become visible.

Fixed a bug with conversion scripts that prevented updating of named argumentsin function calls.

E.20.4. General

Other notable changes:
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Updated ModelicaServices package to support 3D animation.

E.21. Release notes for the OPTIMICA Compiler Toolkit
version 1.26

E.21.1. Compiler Changes

Important improvements to the compiler:

When compiling with msvs as C-compiler, the default bitness for the generated FMU has been changed from
32-bit to the bitness of the JVM. This change affects when compiling viathe APl aswell as the command-line
interface.

Changed the default compiler from msvsto gcc on Windows. The compiler can still be changed with the option
c_compiler.

Added acompiler option flatten_only that terminates compilation early without generating an FMU. This option
can be used together with the option log_dependencies.

Added a compiler option generate svg_metadata_tag that controls if the metadata tag is added during SVG
generation.

Added the FMI 2.0 dependenciesKind attribute to generated FMUs.

Added HTML diagnostics of the equation system and initial equation systemin BLT form for encrypted models.
Seethelinksto "BLT for DAE System" and "BLT for Initialization System".

Added support for connect equations in the diagnostics for encrypted models.

The flat code representation in the diagnostics has been simplified by not listing protected variables in their
own section.

Failed size evaluations should display clearer and more descriptive error messages.

Added options convert_to_input and convert_to_input_from, that allows converting independent parameters to
inputs of the FMU or CasADi model.

Improved symbolic simplification in sets of linear equations containing derivative uses.

Improved symbolic simplification and alias detection in sets of linear equations with coefficients +/- 1. This
structure is common when coupling electrical components and can have a significant impact on the simulation
performance.

Important improvements to the support of CasADi:
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» Added support for external functions when transferring models to CasADi.

» Added limited support for using functions with flexible input sizes with CasADi.

» Added support for if-statements in functions when transferring to CasADi.

» Upgraded third party CasADi library. The CasADi bundled with OCT is now version 3.5.5 instead of 3.2.1.
The release contains a number of bug fixes to the compiler, among them:;

« Fixed incorrect handling of dot-operators (.+, .*, etc) for arrays of operator records.

 Updated the algorithm for symbolically solve equationsin order to protect against structurally division by zero.
* Fixed type checking bug when redeclaring matrix components.

* Fixed bug where list of warnings was not cleared between consecutive compilations.

E.21.2. Python Packages Improvements

New packages:

* Added a Python package for ODE solver dynamic diagnostics.

» Added a Python package for importing CS FMUs into Modelicalibraries.
Important changes to the steadystate Python package:

» The ability to solve equations for additional non-residual output variables has been added to Model Problem. It
isalso now possible to evaluate the residuals and Jacobian of active and held iteration variable sets.

» Thetime and memory required for initialization of a Model Problem instance, and Jacobian evaluation, has been
reduced, allowing much larger models with O(10000) algebraic equations to be transferred and solved.

» Added a method for getting output variable names to Model Problem. Also, an option to return a sparse/dense
Jacobian has been added to M odel Problem.

E.21.3. Runtime Fixes and Improvements

 Fixed incorrect resetting of scaling in non-linear internal FMU blocks, proper update of runtime options and
other bugs related to get/set FMU state.

E.21.4. APl Improvements

Important improvements to the compiler API:
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» Added a method InstanceComponent.getDeclaredComponentClass for retrieving the type specifier for a com-
ponent as declared in the source code.

» Added amethod DeclarationS ze.getDeclaredSubscript for retrieving the size subscripts as strings for Instance-
Components.

The release contains a number of bug fixes to the compiler API, among them:
« Fixed abug with getTopLevel SourceClasses that contained out of date information after unloading library.

« Fixed abug that changed the result of getDeclaredText for Modelica.Utilities.Files.loadResource calls to load-
Resource.

E.22. Release notes for the OPTIMICA Compiler Toolkit
version 1.24.6

This release contains bug fixes to the compiler:

» Parameters affecting connect statements are now properly marked as structural.

E.23. Release notes for the OPTIMICA Compiler Toolkit
version 1.24.5

This release contains bug fixes to the compiler API:

« A bug with conversion scriptsthat prevented componentsfrom being correctly considered for encrypted libraries.

E.24. Release notes for the OPTIMICA Compiler Toolkit
version 1.24.4

This release contains features added to the compiler:

» Added option (mathematical_domain_warnings limit) to control the maximum number of log warnings from
the mathematical domain checks that can be printed during a simulation.

E.25. Release notes for the OPTIMICA Compiler Toolkit
version 1.24.3

In this release, the Modelica Standard Library (MSL) bundled with OCT have received some modifications in
order to add support for 3D animations in Modelon Impact. For additional information of the applied changes,
see Section C.3.
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This release contains bug fixes to the compiler API:
» Prevented one situation where a access is updated incorrectly by two conversion rules.

« Conversion script script bugs fixed including not correctly considering components that are not mentioned in
the script.

E.26. Release notes for the OPTIMICA Compiler Toolkit
version 1.24.2

This release contains bug fixes to the compiler API:

« Fixed abugs with convertModifiers that prevented class redeclare from being removed.

E.27. Release notes for the OPTIMICA Compiler Toolkit
version 1.24.1

This release contains bug fixes to the compiler API:
« Fixed abug with conversion script that lead to some files not being saved.

* Fixed abug which could cause a exception for some combinations of conversion rules.

E.28. Release notes for the OPTIMICA Compiler Toolkit
version 1.24

E.28.1. Compiler Changes
Important improvements to the compiler:
» Removed usage of thread-local storage for global constants in functions.

» Some equations and variables which are allowed to be seen based in the protection annotation are now printed
in flattened code and some diagnostics.

» Added support for CasADi with Python 3. The CasADi bundled with OCT isnow version 3.2.1 instead of 2.1.0.
* Improved support for solving (scalar) linear equations during compile time.

e OCT isnow using FMI Library version 2.2.3 instead of 2.2.
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The release contains a number of bug fixes to the compiler, among them:

 Fixed a C compilation error for the option generate_ode jacobian that could occur when converting an integer
array to areal array in afunction call.

 Fixed abug for records arrays with parameters that have both dependent and independent elements.
* Fixed abug where array components in expandable connectors would sometimes get the wrong modifiers.

 Ensured that no exception is thrown when the output directory for html diagnostics already exists, and updated
the log message. The log message is how shown at log level INFO.

* Fixed abug when flattening certain records that would lead to NullPointerExceptions.

» Fixed abug with deserialization of FMU states for CS FMUs that would sometimes result in a crash.

* Fixed abug with saving the state of an FMU in between time events.

 Fixed abug that caused assertion warnings to be absent from the simulation log for steady-state problems.
 Ensured that no exception is thrown when resolving certain malformed Modelica URIs.

* Setting asaved FMU state on a new FMU instance should no longer crash.

E.28.2. Python Packages Improvements
Important changes to Python packages:

» Steadystate solver supports "time_limit" solver option to stop execution if the elapsed time exceeds a specified
limit.

 In the Steady State framework, there is now support for non-quadratic models. Steady-state problems can be
constructed from models with an unequal number of iteration variables and residuals.

The Assimulo version has been updated from 3.2 to 3.2.4, this entails the following changes:
» Automatic detection of BLAS has been improved.

» Several minor performance improvements.

The PyFMI version has been updated from 2.7.4 to 2.8.3, this entails the following changes:
* Major performance improvements.

 Fixed issue with save/ get FMU state.
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Fixed so that default options are not overriden when setting solver options.
Exposed the dependencies kind attributes from FMI 2.0.

Fixed result saving when saving only the "time" variable.

E.28.3. APl Improvements

Important improvements to the compiler API:

 All InstanceTree methods for obtaining connect equations no longer throws access exception when some con-

nects cannot be shown. A list of visible connectsis now always returned.

The release contains a number of bug fixes to the compiler API, among them:

Fixed a bug where setting modifiers for components in short classes would give incorrect modifiers.
Fixed a problem with moveClass which caused incorrect code when globalizing qualified names.
Fixed a bug with removing and recreating components which caused exception when saving.

Fixed a bug with removing components where some annotations are not removed.

Fixed a bug with setting a value annotation where the annotation is not updated correctly.

Fixed a bug when unloading a library with base classes redeclared in another library caused exception during
unload.

Fixed a bug with moving and renaming a short class which caused exception.
Fixed a bug causing the top class list to be not updated when it needs to.
Fixed a bug with convertClass that caused incorrectly updated names when aclass is moved into a subpackage.

Fixed a bug with library conversion that caused incorrectly updated names when replaced by a shorter names.

E.29. Release notes for the OPTIMICA Compiler Toolkit
version 1.22.1

This release contains a bug fix to the compiler:

Fixed a bug with set and get state of FMUs that would sometimes result in a crash.

* When an encrypted library is on the path but not actually used, diagnostics are no longer restricted.
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E.30. Release notes for the OPTIMICA Compiler Toolkit
version 1.22

E.30.1. Compiler Changes

Important improvements to the compiler:

The file flattened.html of the HTML diagnostics now includes some unencrypted parts of a model when en-
crypted libraries are |oaded.

Thefileindex.html of theHTML diagnosticsisnow generated when encrypted librariesareloaded. Additionally,
model diagnostics are now also printed in log-files for log-level verbose when encrypted libraries are loaded.

Changed so BLT tables are not generated if the number of equations is greater than the limit set with the
diagnostics_limit option.

Changed so protected variables are excluded from the FMI model Description by default. Also added an option
include_protected_variablesfor including protected variables in the model Description. Using the option, a pro-
tected variable will be included if its protection annotation allows it to be inspected in the class.

Exported FMUs following FMI 2.0 now supports the feature to get and set an internal FMU state. Additionally
seriaization and de-serialization is supported.

The release contains a number of bug fixes to the compiler, among them:

Fixed abug for the event_indicator_structure option where there in some cases were differing numbers of event
indicators in the Eventindicators and ModelVariables sections.

Fixed a C-code compilation error that occurred in some cases when using the linspace operator in functions.

Fixed abug for the event_output_vars option where multiple event indicators were created for asingle relation
expression.

Fixed a bug where equations were sorted incorrectly in the BLT when using the option event_output_vars.
Fixed a bug that caused variables with reinit() to cause an error in certain circumstances.
Prevented out of memory errors during C-code compilation for models with many event indicators.

Fixed a bug where compilation would fail with message 'Unknown switch index for relational operator, not in
list of switches.'

Fixed a bug when some elements of an array need parameter equations, and some need binding equations. The
bug led to either incorrect code or an Arrayl ndexOutOfBoundsException.
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Fixed a NullPointer Exception when a record declared within another record has elements with differing vari-
ability.

Fixed a StackOverflowError that could occur with certain types of array expressionsin record constructors.
Fixed a bug when cat() gets an empty array as one of its arguments.

Fixed a bug which caused ArraylndexOutOfBoundsException when multiple variables were assigned with a
function inside an If-equation.

Itis now allowed to specify more than one path for Include, Library, LibraryDirectory and IncludeDirectory.

Fixed a bug where array components in expandable connectors would sometimes get the wrong modifiers.

E.30.2. APl Improvements

Important improvements to the compiler API:

Added method isVirtual ArrayElement() on InstanceComponent to identify virtual array elements. These ele-
ments are added to empty array components or array components with an unknown number of array elements.

Added support for convertClassif.
Added support for convertM essage.

It is now possible to get the connect clauses of a source tree class, using Sour ceClass.getConnects().

The release contains a number of bug fixes to the compiler API, among them:

Fixed an issue where structured libraries were not copied correctly.
Sour ceElement.getSourcePath() no longer throws an exception for built-in types and functions.

Fixed abug with convertMadifiers() when no oldModifierswere specified. The bug caused all existing matching
modifiers to be replaced.

Fixed a bug with conversion scripts where the lookup of classes could cause an exception.
Fixed alimitation in the detection and fixing of name conflicts when updating libraries with conversion scripts.

The methods for getting connect equations in the instance tree now properly throw exceptions when protection
annotations do not allow viewing the diagram, instead of returning an empty list. This appliesto:

* InstanceElement.getConnects()

* InstanceElement.getAllConnects()
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* InstanceElement.getAll ActiveConnects()

* Fixed abug that when moving a class, redeclared el ements would sometimes be incorrectly globalized, yielding
incorrect code.

* Fixed several sources of UnbackedNodeExceptions after editing operations.

E.31. Release notes for the OPTIMICA Compiler Toolkit
version 1.20.1

E.31.1. Bug fixes

The following bugs affecting the 1.20 release only have been fixed:

« Fixed that in some cases, setSourceText() would not preserve formatting and could emit syntactically incorrect
code.

« Fixed that after reading a file with very long lines, editing operations could not be performed in the structured
type hierarchy the file belongs to.

E.32. Release notes for the OPTIMICA Compiler Toolkit
version 1.20

E.32.1. Compiler Changes
Important improvements to the compiler:

» Added anew compiler option time_state variable for treating time as aregular state variable. Thiswill add an
extravariable and equation der (time) = 1.

» Reinitsare now included in dependency cal culations between event indicators and states.
» Added functionality to turn on detailed runtime logging at a specific interval.

 Several minor improvements resulting in a reduced compilation time.

The release contains a number of bug fixes to the compiler, among them:

* Fixed an issue where it was not possible to use directional derivatives with large models.

 Fixed an issue with directional derivatives where record arrays would get an undefined size in generated code.

275



Release Notes

Fixed a bug that would result in an integer overflow error in the linear equation elimination.
Fixed exception when unit attribute for array parameter has array value.
Fixed an issue where equation assert statements gave multiple assertion warnings for the same problem.

Fixed an issue where using the option event_indicator_structure for models with elsewhen clauses caused an
exception.

E.32.2. APl Improvements

Important improvements to the compiler API:

Added support for conversion scripts using the method convertLibrary() on the class API. In this release there
is no support for convertMessage and convertClasslf.

Added a method getDeclaredSze() to SourceComponent and SourceShortClass that returns the array size as
declared in the Modelica code.

Added methods for retrieving constraining clauses to the source api.

The release contains a number of bug fixes to the compiler API, among them:

Fixed a bug where avalue for enumeration literals would be queried when evaluating expressions with a Vari-
ableValueProvider.

Unloading encrypted libraries without license features will now release the licensing executables.

Fixed a bug when deleting, replacing or changing a modifier: Caches in the Source-API would not be flushed,
yielding UnbackedNodeExceptions in some cases.

Fixed abug that deleting a class or unloading alibrary could cause an UnbackedNodeException in rare cases.

Fixed abug that when changing a component name by using renameComponent() or changeComponentName()
to the name of a built-in Modelica function, a NullPointer Exception would be thrown.

Fixed abug that lineslonger than 4095 character in afile caused syntactical problem dueto formatting problems.
The syntax problems are now avoided but user provided formatting and comments are removed in such files.

Added missing checks for name conflicts further down the class hierarchy for renameComponent() and rename-

Class().

E.32.3. Python Packages Improvements

Important changes to Python packages:
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» Made the steadystate package independent of PyJMI
e Updated PyFMI to version 2.7.3

» Updated Assimulo to version 3.2

E.32.4. General

Other notable changes:
» Added the the protection annotation Access.hide to the ModelicaServices package.

e CasADi istemporarily unavailable for thisrelease.
E.32.5. Compliance

E.32.5.1. Modelon libraries

For OPTIMICA Compiler Toolkit version 1.20 the following libraries provided by Modelon are compliant:
« Aircraft DynamicsLibrary 1.3

* Electrification Library 1.4.1

» Engine Dynamics Library 2.5build3

» Environmental Control Library 3.9build3
* Fuel Céll Library 1.11build3

» Fuel System Library 4.8build3

» Heat Exchanger Library 2.5build2

* Hydraulics Library 4.13build3

» Hydro Power Library 2.11build3

 Jet Propulsion Library 2.0

* Liquid Cooling Library 2.5build2

* Pneumatics Library 2.9build3

e Thermal Power Library 1.20build3
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Vapor Cycle Library 2.5build3

Vehicle Dynamics Library 3.5

E.33. Release notes for the OPTIMICA Compiler Toolkit
version 1.18

E.33.1. CasADi

CasADi istemporarily unavailable for this release.

E.33.2. Compiler Changes

Important improvements to the compiler:

Improved performance of handling encrypted libraries.

The release contains a number of bug fixes to the compiler, among them:

A rare bug in constant evaluation of attributes of parameters that are arrays of primitive types was resolved.
The variability of parameters used to set the stateSelect attribute of avariable is now structural.

Fixed abug where linear equations were eliminated incorrectly.

E.33.3. APl Improvements

Important improvements to the compiler API:

Grant access to more annotations in encrypted libraries. Details are found in the APl documentation of the
Annotation interface.

Deprecated the method SourceClass.iconSVG() because icons rendered by it are of poor quality. Use
InstanceClass.iconSVG() instead.

The following functionality is now exposed through the EditingManager, and the methods themselves are now
deprecated:

» SourceshortClassimpl.setSuper Class(String). This method now also preserves string comments and annota
tions.

 Annotation.experimental _setValue(String)

» Modifier.experimental _replaceWith(String)
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Added APl method API.checkSyntaxLibrary(Path) for running a syntax check on all Modelicafilesin alibrary.

Generated icons no longer include sub-connectors of connectors.

The release contains a number of bug fixes to the compiler API, among them:

Expression.getDeclaredText(): parenthesized expressions would not print parentheses for expressions retrieved
from the Source-API.

Components are now final when modified final without any value modification. Previoudly, the final modifier
did not have any effect in this case.

The API can now correctly determine the size of row components. Previously some cases were erroneously
reported as scalars.

Fixed a problem where getQualifiedName(), in one case, did not contain indices, and where getElementName()
contained parent names.

Many bug fixes where made in the functionality of the EditingManager. It can now be considered non-experi-
mental whilein previous releases, it should have been marked as such.

CompilationException did not contain any warningsthat occurred during compilation if therewereerrorsaswell.

E.33.4. Python Packages Improvements

Important changes to Python packages:

It is now possible to add additional Java libraries to classpath via PyModelica before starting the Java Virtual
Machine (JVM).

In the Steady State framework, there is now support for using dynamic models, i.e. using states as iteration
variables and derivatives as residuals.

E.33.5. Compliance

E.33.5.1. Modelon libraries

Inrelease 1.18 we have updated the M odelica Standard Library (MSL) versionto 3.2.3, build 3. It hasbeen modified
with additional patches, see Section C.3.

For OPTIMICA Compiler Toolkit version 1.18 the following libraries provided by Modelon are compliant:

Aircraft DynamicsLibrary 1.3

Electrification Library 1.4
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* Engine Dynamics Library 2.5
» Environmental Control Library 3.9
« Fue Cdl Library 1.11

» Fuel System Library 4.8

» Heat Exchanger Library 2.5

» Hydraulics Library 4.13

» Hydro Power Library 2.11
 Jet Propulsion Library 1.6
 Liquid Cooling Library 2.5

e Pneumatics Library 2.9

e Thermal Power Library 1.20
» Vapor CycleLibrary 2.5

» Vehicle Dynamics Library 3.5

E.34. Release notes for the OPTIMICA Compiler Toolkit
version 1.16

E.34.1. Compiler Changes
With thisrelease OPTIMICA Compiler Toolkit is shipped with Python 3.7.4.
Important changes to the compiler:

» Added acompiler option mathematical_domain_checks which determinesif domain checks are to be performed
for all mathematical functions.

 Fixed abug with partial variability propagation resulting in unbalanced equation systems.

» Added amethod for evaluation at compile time of callsto external functionsthat are supplied in DLLs, without
compiling an executable on the fly. This decreases compilation time for models with many such function calls.
Activated by the option external_constant_evaluation_dynamic. This option ison by default.

* Nominals are now always positive in the FM1 model description.
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Improved attribute eval uation robustness for some cases. Parametric attributes are now only generated in model
descriptions for inputs and states.

Format string argument to the String function is now respected during constant evaluation.

A graphical Text-primitive with a line-break in its textString annotation value no longer throws a NullPoint-
erException”.

E.34.2. APl Improvements

Important improvements to the compiler API:

Added Annotation.getDescriptionString() to access an annotation's description string.
Added EditingManager.copyComponent() for copying a component to another class.

Removed InstanceComponent.experimental_copylnto() and experimental_duplicate() as that functionality is
now available through the EditingManager. See JavaDoc for updated semantics.

Added FilterableComponent.getConditionExpression() to access the optional component's optional condition
expression.

Fixed an issue causing incorrect behavior of editing operations and several API functions after
EditingManager.addTopL evel Class() or addTopL evel Package() has been used.

EditingM anager.removeClass() no longer has restrictions regarding which classes can be removed.

Fixed issue with EditingManager.copyClass() which did not globalize all required accesses.

E.34.3. Python Packages Improvements

Important changes to Python packages:

The PyFMI version has been updated from 2.5.3 to 2.5.7, this entails the following changes:

Fixed several bugs for Python 3 compliance.

Fixed an issue with computing the Jacobian using the structural information of the model when the model has
no state.

The default value of the simulation option maxh is now based on ncp (number of communicaton points), start
and stop time, according to the following equation: maxh=(stop-start)/ncp.

The default value of ncp (number of communicaton points) is now 500 instead of 0.
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» Thedefault value for Jacobian compression has been changed. It is now applied when using CV ode for systems
of size larger than 10.

» An option has been added to specify if variable descriptions should be stored in the result file.

E.35. Release notes for the OPTIMICA Compiler Toolkit
version 1.14

E.35.1. Important information

Note, with the next release the Python distribution bundled with OCT is planned to be updated from version 2.7
to version 3.x.

E.35.2. Compiler Changes
Important changes to the compiler:
» Added dependency to gson thirdparty library.

« Option event_indicator_structure is no longer experimental. Updated the functionality of the option to only
include reverse dependencies.

» Added options for including extra resource filesin FMU: extra_resources and extra resources from.

E.35.3. APl Improvements
I mportant improvements to the compiler API:

» Switch to "java.nio.file.Path" instead of "File" or "String"s representing paths in the API. The API is back-
wards-compatible, but methods referring to File and String are deprecated. In corner-cases, behavior may differ
asthe old File-API handles malformed paths such as "/C:/path" and the empty path differently.

» Added support for loading libraries as read-only and for checking if alibrary or a source element is read-only.
Encrypted libraries and libraries in MODELICAPATH will be forced into a read-only state regardless of the
client's request.

» Can now generate mirrored SVG iconsin the API by using negative width and/or height.

 Fixed abug that "flow" connector components were incorrectly reported as having causality prefix "input" for
InstanceComponent only. They are now correctly reported as having causality "none" for both instance and
source components.

* Annotation.getBindingExpression() now only returns non-null for actual binding expressions, i.e., it now
confirms to the documentation. New function asExpression() added for interpreting an Annotation as
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an expression. This now aso works for function calls. Traversal of annotations has also changed:
Annotation.valueAsAnnotation() now returns the value directly, e.g., for "x = f()", an annotation referencing
"f()" isreturned. Before, 'forPath("f")' or "subAnnotations().iterator().next()" was needed.

E.35.4. Python Packages Improvements

Important changes to Python packages:

The PyFMI version has been updated from 2.5 to 2.5.3, this entails the following changes:

* Fixed wrong default value for FMUM odel M E1Extended.

 Improved relative imports of Assimulo dependent classes.

* Fixed issue with unicode symbolsin result files.

« Fixed anumber of encode/decoding issues for Python3.

 Forced no copy if the provided array is already correct, minor performance improvement.
* Fixed issue with corrupt result files after failed simulations.

For the steady state framework the following has been changed:

* Added an experimental feature ResultHandling to enable writing results to different file formats.

« Initialization failuresin FMUProblem should now properly close the log file.

E.35.5. MATLAB interface

Important updates to the MATLAB® interface:

* Fixed such that an empty command window is no longer displayed in MATLAB® during compilation.
E.35.6. Compliance

E.35.6.1. Modelon libraries

For OPTIMICA Compiler Toolkit version 1.14 the following libraries provided by Modelon are compliant:
* Aircraft Dynamics Library 1.2

* Electrification Library 1.3

* Engine DynamicsLibrary 2.4
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* Environmental Control Library 3.7
« Fuel Cell Library 1.10

e Fuel System Library 4.6

* Heat Exchanger Library 2.4

* HydraulicsLibrary 4.11

» Hydro Power Library 2.10
 Liquid Cooling Library 2.4

e Pneumatics Library 2.7

e Thermal Power Library 1.19

» Vapor Cycle Library 2.4

* Vehicle Dynamics Library 3.4

E.36. Release notes for the OPTIMICA Compiler Toolkit
version 1.12

A major change in this release is the update of Java version used into OpenJDK 11.

E.36.1. Compiler Changes

Important changes to the compiler:

» Added support for unspecified enumerations.

* Protection annotations are now used to determine if avariable isincluded in model Description.xml.
 Turned off loop unrolling in functions to increase performance.

* Improved array initialization for primitive arraysin global constants.

» Added option for controlling maximum allowed size of dynamic state sets. Changed default from 8 to 10.

E.36.2. APl Improvements

Important improvements to the compiler API:
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» Added method for retrieving access protection from classes.

» Allow evaluation of binding expressions in source and instance tree given user-provided variable values.

Added experimental method for copying a class into another class.

Added experimental methods for copying components.

 Improving and finalizing the modifiable and qualified name methods.

E.36.3. MATLAB interface

Important updates to the MATLAB® interface:

» Changed the backend of OCT (MATLAB) to do compiler specific callsthroughthe MATLAB® Pythoninterface
instead of Java.

» Made it possible to release specific residua variables without having to release related indices for iteration
variables.

E.36.4. Compliance

E.36.4.1. Modelon libraries
For OPTIMICA Compiler Toolkit version 1.12 the following libraries provided by Modelon are compliant:
* Engine Dynamics Library 2.3

» Environmenta Control Library 3.6
e Fuel Cell Library 1.9

» Fuel System Library 4.5

e Heat Exchanger Library 2.3

* Hydraulics Library 4.10

» Hydro Power Library 2.9
 Liquid Cooling Library 2.3

* Modelon Base Library 3.3

e Pneumatics Library 2.6
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e Thermal Power Library 1.18
» Vapor Cycle Library 2.3

» Vehicle Dynamics Library 3.3

E.37. Release notes for the OPTIMICA Compiler Toolkit
version 1.10

E.37.1. Compiler Changes
Important changes to the compiler:

« Fixed a bug that resulted in variables not being re-initialized in certain cases by adding writeback of reinitial-
ization in block residual functions.

E.37.2. APl Improvements
Important improvements to the compiler API:

« A short class declaration can now be changed to point to another class via setSuperClass(String).
E.37.3. Compliance

E.37.3.1. Modelon libraries

For OPTIMICA Compiler Toolkit version 1.10 the following libraries provided by Modelon are compliant:
e Engine Dynamics Library 2.3

» Environmental Control Library 3.6

* Fuel Cell Library 1.9

e Fuel System Library 4.5

* Heat Exchanger Library 2.3

* Hydraulics Library 4.10

» Hydro Power Library 2.9

e Liquid Cooling Library 2.3
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* Modelon Base Library 3.3

* Pneumatics Library 2.6

e Thermal Power Library 1.18
» Vapor Cycle Library 2.3

» Vehicle Dynamics Library 3.3

E.38. Release notes for the OPTIMICA Compiler Toolkit
version 1.8

E.38.1. APl Improvements

Important improvements to the compiler API:

» Added experimental feature to instance components that returns the annotation node from the component's class
in the context of the component.

In addition there are some minor performance and debug improvements.
E.38.2. Compliance

E.38.2.1. Modelon libraries

For OPTIMICA Compiler Toolkit version 1.8 the following libraries provided by Modelon are compliant:
» Engine Dynamics Library 2.2

» Environmenta Control Library 3.5

e Fuel Cell Library 1.8

* Fuel System Library 4.4

» Heat Exchanger Library 2.2

e HydraulicsLibrary 4.9

» Hydro Power Library 2.8

 Liquid Cooling Library 2.2
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e Pneumatics Library 2.5

Thermal Power Library 1.17
e Vapor CycleLibrary 2.2

» Vehicle Dynamics Library 3.2

E.39. Release notes for the OPTIMICA Compiler Toolkit
version 1.6.1

E.39.1. APl Improvements
Important improvements to the compiler API:

* Fixed bug where APl method getAllM atchingRedeclareChoices() failed for aredeclared class declaration, where
the constraining type was on the original declaration and not a fully qualified name.

 Fixed abug in experimental_rename that corrupted whitespace formatting in getSourceText().

E.40. Release notes for the OPTIMICA Compiler Toolkit
version 1.6

E.40.1. Compiler Changes

Important changes to the compiler:

* Fix bug where prettyprint for modifier failed.

« Fixed type checking of array sizesfor elementsin arrays of records.

» Made sure to release the package.order file after reading.

E.40.2. APl Improvements

Important improvements to the compiler API:

» Changed modifier exists method to work correctly for unmodified components.

« Fixed experimental_delete for classes in structured class retrieved by anything else than traversal.

* Fixed bug in generation of SVG iconsin the instance tree.
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E.40.3. Python Packages Improvements

Important improvements to our Python packages:

 Changed exception type in the constructor of FMUProblem for unbalanced problems.
E.40.4. Compliance

E.40.4.1. Modelon libraries
For OPTIMICA Compiler Toolkit version 1.6 the following libraries provided by Modelon are compliant:
« Engine Dynamics Library 2.2

» Environmental Control Library 3.5
» Fuel Cell Library 1.8

e Fuel System Library 4.4

» Heat Exchanger Library 2.2

e Hydraulics Library 4.9

» Hydro Power Library 2.8
 Liquid Cooling Library 2.2

e Pneumatics Library 2.5

* Thermal Power Library 1.17

e Vapor CycleLibrary 2.2

* Vehicle Dynamics Library 3.2

E.41. Release notes for the OPTIMICA Compiler Toolkit
version 1.5
E.41.1. Compiler Changes

Important changes to the compiler:

» Updated the GUID calculation in FMUs to only be dependent on the generated model description XML.
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* Fixed crash bug when combinding exlude_internal_variables in combination with hand guided tearing.
» Updated calculation order of start values and dependent parameters to reduce number of evaluations.

« Fixed that binding expression splitting doesn't check bounds.

* Don't dlow any inlining of equations in when loops.

 Fixed exception from specific combination of record with array of unknown size in if expression in binding
expression.

» Enabled evaluation of non-literal expressionsin annotations.

E.41.2. APl Improvements

The focus areas of this release have mainly been performance issues and bug fixes. The most important improve-
ments to the compiler API:

» Allowed some limited evaluation of binding expressions in source and instance tree.

» API doesn't any longer throw exception when iterating beyond the array components with binding expression.
« Fixed the unability to add a modification to a component with a value (binding expression).

* Fixed bug in getSizeParameter() which caused error when declared in class inside a component.

E.41.3. Python Packages Improvements

Important improvements to our Python packages:

* Fixed issue with reusing the PyFM| computed FD Jacobian.

« Fixed such that log viewer get jacobians returns matrices even for 1-dimensional problems.

» Added check against empty lists to the constructor of FMUProblem.

* Improved performance of the constructor in FMUProblem.
E.41.4. Compliance

E.41.4.1. Modelon libraries
For OPTIMICA Compiler Toolkit version 1.5 the following libraries provided by Modelon are compliant:

» Engine Dynamics Library 2.2
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* Environmental Control Library 3.5
* Fuel Cell Library 1.8

e Fuel System Library 4.4

* Heat Exchanger Library 2.2

e Hydraulics Library 4.9

* Hydro Power Library 2.8

* Liquid Cooling Library 2.2

e Pneumatics Library 2.5

e Thermal Power Library 1.17

» Vapor Cycle Library 2.2

« Vehicle Dynamics Library 3.2

E.42. Release notes for the OPTIMICA Compiler Toolkit
version 1.4

E.42.1. Runtime Changes

Important changes to Runtime:

* Improved the runtime logging framework due to performance issues with specific models.

E.42.2. Compiler Changes

Important changes to the compiler:
* Minor improvements of compilation and simulation performance.

« loadResource on directories now always leads to compile time evaluation of path.

E.42.3. APl Improvements

The focus areas of this release have mainly been performance issues and bug fixes. The most important improve-
ments to the compiler API:

» Added support for obtaining scalar parameters used as array Ssizes.
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 Improved behaviour of getAllMatchingRedeclareChoices() on redeclarations.
 Connectors without placement annotation are no longer rendered in icons for the instance tree.
 Improved functionality of getSourceText().

» The modification tree constructed by setBindingExpression should now be correct.

E.42.4. Python Packages Improvements

Important improvements to our Python packages:

» Made several improvements to the diagnostic scriptsin the steady state framework.
» The steady state solver can now be used without generating alogfile.

» Added the possihility to use zero-dimensional problemsin the steady state framework.
E.42.5. Compliance

E.42.5.1. Modelon libraries
For OPTIMICA Compiler Toolkit version 1.4 the following libraries provided by Modelon are compliant:
e Engine DynamicsLibrary 2.2

« Environmenta Control Library 3.5
» Fuel Cell Library 1.8

* Fuel System Library 4.4

e Heat Exchanger Library 2.2

e Hydraulics Library 4.9

* Hydro Power Library 2.8
 Liquid Cooling Library 2.2

e Pneumatics Library 2.5

* Thermal Power Library 1.17

» Vapor Cycle Library 2.2

* Vehicle Dynamics Library 3.2
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E.43. Release notes for the OPTIMICA Compiler Toolkit
version 1.3.1

E.43.1. APl Improvements

Important improvements to the compiler API:

 Fixed a defect which caused an exception to be thrown when calling the getAllMatchingRedeclareChoices()
method in InstanceClass and InstanceComponent if there was anon-library file loaded.

E.43.2. Compliance
E.43.2.1. Modelon libraries

For OPTIMICA Compiler Toolkit version 1.3.1 the following libraries provided by Modelon are compliant:
« Engine Dynamics Library 2.1

* Environmental Control Library 3.4
* Fuel Cell Library 1.7

» Fuel System Library 4.3

e Heat Exchanger Library 2.1

e HydraulicsLibrary 4.8

» Hydro Power Library 2.7
 Liquid Cooling Library 2.1

e Pneumatics Library 2.4

e Thermal Power Library 1.16

» Vapor Cycle Library 2.1

» Vehicle Dynamics Library 3.1

E.44. Release notes for the OPTIMICA Compiler Toolkit
version 1.3

» Added partial and experimental functionality for managing model editing.
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E.44.1. Compiler Changes
Important changes to the compiler:
* Fixed abug where linear equation elimination broke HGT equations.

 Support for initial parameter external objects.

E.44.2. APl Improvements

Important improvements to the compiler API:

» Added partia and experimental functionality for managing model editing.
» Added possibility to get size information of instance components.

* Added the ability to remove modifiers.

» Added support for obtaining size dimension type information.

» Added support in API for getting source text of source classes.

» Added support in API for getting all matching redeclare choices for instance classes and instance components.

E.44.3. Python Packages Improvements
Important improvements to our Python packages:

» Added diagnostics package to Python steady states module.

Added license check for using the solver in the Python steady state module.
* Fixed issue with getting time varying variables (sometimes wrong variables were returned)
* Added functionality to set enumerations with strings.

e Improved input handling for FMI12.
E.44.4. Compliance

E.44.4.1. Modelon libraries
For OPTIMICA Compiler Toolkit version 1.3 the following libraries provided by Modelon are compliant:

* Engine DynamicsLibrary 2.1
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E.45. Release notes for the OPTIMICA Compiler Toolkit

Environmental Control Library 3.4
Fuel Cell Library 1.7

Fuel System Library 4.3

Heat Exchanger Library 2.1
Hydraulics Library 4.8

Hydro Power Library 2.7

Liquid Cooling Library 2.1
Pneumatics Library 2.4

Thermal Power Library 1.16
Vapor Cycle Library 2.1

Vehicle Dynamics Library 3.1

version 1.2

Support for 64-bit Python has been added together with new and updated Python packages, see Section E.45.3.

This enables simulation of 64-bit FMUs with PyFMI.

The bundled gcc C-compiler is now updated to gcc-tdm 5.1.0 which enables compilation of 64-bit FMUs.

Full string support

Changed the default FM1 version when compiling FMUs from Python to FMI 2.0 instead of FM1 1.0.
Changed default file storing method to binary format when simulating FMUs with PyFMI in Python.
Achieved significant speedup in some models by adding a new memory allocation algorithm.

Added support for source code FMUs

Added support for steady-state computations from Python.

Added functionality for obfuscating variable names in generated FMU

Added functionality for hiding internal variablesin the FMU.
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e There is now support for OPC communication through the bundled Python package OpenOPC together with
Graybox OPC Automation Wrapper.

E.45.1. Compiler Changes

Important changes to the compiler:

» Added option for disabling external evaluation during variability propagation
 Improved Hand-Guided Tearing: Allow initial parameter variability in hold expression
E.45.2. APl Improvements

Important improvements to the compiler API:

 Improved access control for encrypted libraries.

 Improved library license checks.

» Added a representation of modifiers which enables the retrieval of modification points for classes and compo-
nents.

 Improved handling of primitive types and enums.

* Improved SV G rendering.

E.45.3. Python distributions

With this release there are now two bundled Python interpreters, one for 32-bit mode and one for 64-bit mode.
In addition, there are now many more Python packages included and previously bundled packages are updated
to newer versions. Among the new packages we have: XLwings, openpyxl, freeopcua, jupyter, SALib, natsort,
pyserial, pyro and coverage.

E.45.4. Compliance

E.45.4.1. Modelon libraries

For OPTIMICA Compiler Toolkit version 1.2 the following libraries provided by Modelon are compliant:
* Engine DynamicsLibrary 2.1

* Environmental Control Library 3.4

e Fuel Cell Library 1.7
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» Fuel System Library 4.3

* Heat Exchanger Library 2.1
e Hydraulics Library 4.8

* Hydro Power Library 2.7
 Liquid Cooling Library 2.1
e Pneumatics Library 2.4

e Thermal Power Library 1.16
e Vapor CycleLibrary 2.1

» Vehicle Dynamics Library 3.1

E.46. Release notes for the OPTIMICA Compiler Toolkit
version 1.1

One of the focus areas for this release has been performance. The following are the main improvements:

* With this release compiler performance has been improved with up to 30% in compilation time and 20% in
memory reduction for some benchmark models.

* Support for the sparse solver SuperL U is added for simulation of FMI12 ME FMUs in PyFMI.
» A sparse solver has been added to solve large linear blocks.

The OPTIMICA Compiler Toolkit API has been extended with some new features.

E.46.1. APl Improvements

The main improvement to the compiler API is the added decoupling to the compiler API and underlying model.
This enables the API to flush the underlying model without affecting the APl nodes used by the user. In addition,
there are several minor new features and a couple of minor bug fixes.

E.46.2. Compliance

E.46.2.1. Modelon libraries
For OPTIMICA Compiler Toolkit version 1.1 the following libraries provided by Modelon are compliant:

* Engine Dynamics Library 2.0
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» Environmental Control Library 3.3.1
» Fuel Cell Library 1.6

* Fuel System Library 4.2

» Heat Exchanger Library 2.0

* HydraulicsLibrary 4.7

* Hydro Power Library 2.6.4
 Liquid Cooling Library 2.0

e Pneumatics Library 2.3

e Thermal Power Library 1.15

» Vapor CycleLibrary 2.0

» Vehicle Dynamics Library 3.0
E.46.2.2. Modelica Standard Library (MSL)

No changes since previous release.
E.46.2.3. IBPSA

No changes since previous release.

E.47. Release notes for the OPTIMICA Compiler Toolkit
version 1.0

Initial release.
E.47.1. Compliance

E.47.1.1. Modelon libraries

For OPTIMICA Compiler Toolkit version 1.0 the following libraries provided by Modelon are compliant with
some limitations:

TableE.1
Library Limitations
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Engine Dynamics Library Fully compliant
128

Environmental Control Li- Fully compliant
brary 3.3

Fuel Cédll Library 1.5 Fully compliant
Fuel System Library 4.1 Fully compliant

Heat Exchanger Library 1.6 | Numerical robustness issues for
HeatExchanger Tests.HeatExchanger s.Flat Tubes.Experiments.Condenser Receiver

Hydraulics Library 4.6 Fully compliant

Hydro Power Library 2.6.3 Fully compliant

Liquid Cooling Library 1.5.3 |Fully compliant

Pneumatics Library 2.2 Fully compliant

Thermal Power Library 1.14 |Numerical robustness issuesfor:

Thermal Power Tests.Exampl es.Coal .Super Critical Rankine400MWe,

Thermal Power Tests.Medium.FastExhaustWithAsh.Over Critical Rankine400MWe,
Thermal Power Tests.Medium.Water Polynominal . HRSG and

Thermal Power Tests.Medium.Water Polynominal .Over Criti cal Rankine400MWe.

Vapor CycleLibrary 1.5 Fully compliant

Vehicle Dynamics Library 2.5 | Fully compliant

E.47.1.2. Modelica Standard Library (MSL)

For this release, the Modelica Standard Library (MSL) version 3.2.2 build 3 with the following patches applied
is used:

e To the model Modelica.Blocks.Examples.NoiseExamples.ActuatorWithNoise defined in Modelica/Blocks/
package.mo a StateSel ect.alwaysis added for Controller.y1. With this patch dynamic state selection is avoided.
See also the reported issue 2189 on the GitHub repository for Modelica Association.

* The model Modelica.Fluid.Examples.Tanks. TanksWithOverflow does not initialize with the origina
parametrization in MSL 3.2.2 build 3 due to variable bounds not being respected, see issue 2060 on the GitHub
repository for Modelica Association. In the patch additiona fluid flows through an overflow pipe if the level of
the upper tank exceeds 6 metersinstead of 10 meters.

» The state selection in Modelica.Magnetic.FluxTubes.Examples.Hysteresis.HysteresisModel Comparison is
patched to improve the numerical robustness, seeissue 2248 on the GitHub repository for Modelica Association.

« In Modelica.Fluid.Examples. TraceSubstances.RoomCO2WithControl s the experiment tolerance is tightened to
1e-007 instead of 1e-006 to avoid chattering.
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* In Modelica.Fluid.Examples.Inver seParameterization pump.m_flow_start is set to 0.5 instead of 0.0. With this
change the correct branch is chosen in the actual Stream operator, see issue 2063 on the GitHub repository for
M odelica Association.

With the patches listed above applied, all example modelsin version 3.2.2 build 3 of MSL simulate correctly with
OPTIMICA Compiler Toolkit.

E.47.1.3. IBPSA

There is support for IBPSA, a Modelica library for building and disctrict energy systems. More information can
be found on the Modelica IBPSA library GitHub website.
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