
HIERARCHICAL SYSTEM 
MODELING

Lecture 2.1



Benefits with hierarchical models

Library Architecture and Model Structure

Browse model hierarchy

Parameter propagation and modifiers

Reconfigurable models

System stickies and views

OVERVIEW

Copyright © 2022 Modelon 2



BENEFITS WITH HIERARCHICAL MODELS

Copyright © 2022 Modelon 3



FLAT VS. STRUCTURED MODEL

• Example of a hydraulic excavator
▪ flat structure

▪ one level for all components

▪ no structural distinction between 
different domains as well as 
experiment boundary conditions

▪ difficult to quickly understand the 
basic idea of the model for 
someone who has not created it

Copyright © 2022 Modelon 4



Example of a driver - passenger car experiment

• Modular system decomposition makes reuse 
and exchange of system parts easier.

FLAT VS. STRUCTURED MODEL

Copyright © 2022 Modelon 5



Example of a driver - passenger car experiment

• Modular system decomposition makes reuse and exchange of system parts easier.

• Individual components are grouped into subsystems.

FLAT VS. STRUCTURED MODEL

Copyright © 2022 Modelon 6



Example of a driver - passenger car experiment

• Modular system decomposition makes reuse and exchange of system parts easier.

• Individual components are grouped into subsystems.

• Physical interaction comprehensible from the graphical view. 

FLAT VS. STRUCTURED MODEL

Copyright © 2022 Modelon 7



LIBRARY ARCHITECTURE AND MODEL STRUCTURE

Copyright © 2022 Modelon 8



• If a large complex system model can be used and understood by someone other than the 
person who modeled it

• The structure of the real-world system is reflected 

• Physical component interactions can be recognized easily in the graphical view

• The system model can be graphically  reconfigured  and adapted to different boundary 
conditions

• Model classes are easy to find

• Well organized package structure with descriptive names

FEATURES OF A GOOD MODEL LIBRARY

Copyright © 2022 Modelon 9



PACKAGE STRUCTURE

Example: Sub-systems within Vehicle
package correspond to components in 
diagram view of a vehicle

Good modeling practice:

• Package structure resembles system structure 
to a certain extent

• Within reasonable depths, i.e., only upper 
levels

Copyright © 2022 Modelon 10



BROWSE MODEL HIERARCHY

Copyright © 2022 Modelon 11



• Class
• Modelica keyword

• model, connector, package, type...

• defines behavior

• convention: name starts with upper case

• Component
• not a Modelica word

• instance of a class

• convention: name starts with lower case

CLASS VS. COMPONENT

12Copyright © 2022 Modelon

Modelica text view:
component
instance name

class
name

class

Drag and drop

component



COMPONENT BROWSER

Copyright © 2022 Modelon

• We saw that Modelica enables 
hierarchical modeling – you can 
inspect the contents/hierarchy 
of a model using the 
Components Browser

• It is available for all three 
modes 

• Useful to get an overall idea of 
the components present in the 
model

• It also shows any classes the 
current model extends 

13



• Inspecting a component helps understand what components are present inside it

• Modelon Impact allows you to go down in the hierarchy in two ways:

INSPECT COMPONENT

Copyright © 2022 Modelon

1. Right-click the component on canvas then 
Inspect component or Inspect component in new 
tab

2. Double click component in components browser

14



• To go back up, click on any of the Bread-crumbs

BROWSE INSTANCE TREE

Copyright © 2022 Modelon

Bread-crumbs Hierarchy

15



PARAMETER PROPAGATION AND MODIFIERS

Copyright © 2022 Modelon 16



• "A modifier is a Modelica language construct that allows to modify an existing class by setting a 
variable, parameter or attribute value, by binding a parameter or variable to an expression 
containing other parameters or to change a class reference to another class.“

• Examples:

• Simple parameter modifier: inertia(J = 0.2)

• Class modifier: extends Template.FullCarAccelerationTest(redeclare Systems.OriginalCarConfig
car, throttle(k=1))

• Binding equation: volume(v = tank.level*tank.crossArea)

WHAT ARE MODIFIERS?

Copyright © 2022 Modelon 17



• The preferred workflow to create a proper data flow through the model tree is parameter propagation

• This was introduced in lecture Reusable Components

MODIFIERS

Copyright © 2022 Modelon

Hierarchy

18



• A ”system model” here is a fully-paramatrized model 
ready to be simulated

• You can modify any part of the final model

• Modifier only resides within the experiment 
container

• In the example, the modified value of 350 for 
the parameter tau_max is only applicable to 
the particular experiment – DriveCycleTest

HIERACHICAL MODIFIERS IN SYSTEM MODELS

Copyright © 2022 Modelon 19



• If modifiers are applied in the modeling mode, its stored in the modelica code 

• If modification is done in Experimentation mode, it will be stored in that specific Experiment 
definition.

HIERARCHICAL MODIFIERS IN SYSTEM MODELS

Copyright © 2022 Modelon 20



• Component reference is an option when you want to define variables by referencing variables 
or parameters from other components

• Data for the referenced variable is automatically retrieved (from the model instance tree)

• In the example, value of tank.level (level of fluid in the tank) has been used in a realExpression 
block

MODIFIERS BY COMPONENT REFERENCE

Copyright © 2022 Modelon 21



• Modification by component reference can be done by browsing or autocompletion

1. Select the component where a parameter needs to be modified

2. Go to Details Panel-> Properties

3. Start typing the parameter by dot notation

o Start typing to enable instance browser

o Use arrow keys + (enter or tab)

MODIFIERS BY COMPONENT REFERENCE

Copyright © 2022 Modelon 22



RECONFIGURABLE MODELS

Copyright © 2022 Modelon 23



• When creating a new component or subsystem you need to design its interface

• Connector interface (how it interacts physically)

• Parameter interface (what data is needed)

INTERFACING A COMPONENT

Copyright © 2022 Modelon 24



• An interface contains

• Connectors

• Common parameters

• Well-defined interfaces ensure plug-compatibility: all models that 
share an interface will also fit in the template

• Interfaces are used with inheritance, in Modelica the keyword is 
‘extends’

partial model EngineInterface

Modelica.Mechanics.Rotational.Interfaces.Flange_a shaft

annotation (...);

Modelica.Blocks.Interfaces.RealInput throttle

annotation (...);

end EngineInterface;

model Engine

extends EngineInterface;

...

end Engine;

• Engine has all the properties of EngineInterface

INTERFACE CLASSES

Copyright © 2022 Modelon 25



TEMPLATE CLASSES

• A template is a topology definition

• A template consist of 

• interfaces that act as placeholders

• connections between the placeholders

• Using a template, configurations can be created by just specifying the components / 
subsystems

Copyright © 2022 Modelon 26



SYSTEM VARIANT

• If we have a template, with well defined interfaces, we can extend that and create a 
specific system variant:

Replace component

Copyright © 2022 Modelon 27



• The parameter tab of the replaceable model will show a drop-down list

• The drop-down list will contain all matching choices

• Matching choices here include any car model extending the car interface

CHANGE CLASS THROUGH DROP-DOWN

Copyright © 2022 Modelon 28



• Templates are easy to create

• Serve different architectures

• Reuses all subsystems

TEMPLATE VARIATIONS

Copyright © 2022 Modelon

redesign

original

or new prototype

29



SYSTEM STICKIES AND VIEWS

Copyright © 2022 Modelon 30



• Can be created for each subsystem

STICKIES AND VIEWS

Copyright © 2022 Modelon 31



• Multiple component views can be aggregated to a new system view

STICKIES AND VIEWS AGGREGATION

Copyright © 2022 Modelon 32



In this workshop you will:

• Browse a model library

• Inspect a hierachical model

• Redesign an architecture

• Create new configurations

WORKSHOP 2.1

Copyright © 2022 Modelon 33


	Default Section
	Slide 1: Hierarchical System modeling
	Slide 2: Overview
	Slide 3: Benefits with hierarchical models
	Slide 4: Flat vs. structured model
	Slide 5: Flat vs. structured model
	Slide 6: Flat vs. structured model
	Slide 7: Flat vs. structured model
	Slide 8: Library Architecture and Model Structure
	Slide 9: Features of a good model library
	Slide 10: Package structure
	Slide 11: Browse model hierarchy
	Slide 12: Class vs. component
	Slide 13: Component browser
	Slide 14: Inspect component
	Slide 15: Browse instance tree
	Slide 16: Parameter propagation and modifiers
	Slide 17: What are modifiers?
	Slide 18: Modifiers
	Slide 19: Hierachical Modifiers in system models
	Slide 20: Hierarchical modifiers in System models
	Slide 21: Modifiers by Component reference
	Slide 22: Modifiers by Component reference
	Slide 23: Reconfigurable Models
	Slide 24: Interfacing a component
	Slide 25: Interface classes
	Slide 26: Template classes
	Slide 27: System variant
	Slide 28: Change class through drop-down
	Slide 29: Template variations
	Slide 30: System stickies and views
	Slide 31: STickies and Views
	Slide 32: Stickies and views aggregation 
	Slide 33: Workshop 2.1


