

OVERVIEW

Equation-based components

State selection in a dynamic system

Initialization

EQUATION-BASED COMPONENTS

- Consider a physical system, like a mass in a gravity field, there are many different types of analysis to do; for example:
 - Given an initial speed and altitude, when will the mass return to earth?
 - What external force is required to reach a desired altitude profile?
- Independent of the type of analysis you would like to do on this system, the basic textbook equations will always remain the same
- Equation-based modeling is acausal
- Equation-based modeling can be used to create reusable code!

BOUNDARY CONDITIONS

• Equation-based modeling is all about separating the physical and mathematical principles and laws from the boundary conditions of a specific case.

SOLVE DIFFERENT TYPES OF PROBLEMS

- Both the dynamic conditions and the initial conditions are acausal
 - Allows to solve different types of problems: dynamic/steady-state, forward/inverse
- A dynamic model can be used for steady state initialisation
 - Initialize with v=0 and a=0
- The same model can be used to solve both the forward problem and its inverse (given that there is an inverse solution)
 - Provide an equation for the trajectory and calculate the drive force

INVERSE MODELING

- Model inversion is a powerful feature that has many applications like advanced controller design
- Acausal nature of Modelica models makes it a very good candidate for automatic inversion of models
- Modelica models are automatically rearranged based on boundary condition imposition during translation process in a tool
- Impact's symbolic processing capabilities help the model inversion with very less user effort

DEGREES OF FREEDOM VS STATE VARIABLES

- In mechanics, the degrees-of-freedom (DOF) are essentially the directions that the system or parts of the system can move without breaking:
 - A body in space has six DOF, three for translational motion, and three for rotational motion.
 - Constraints can remove DOF:
 - A door has one DOF as it can only swing around its hinges
 - A scissor mechanism also only has one DOF
- The minimal set of variables needed to uniquely define the state of the system are called state variables
 - If the set of variables that represent each DOF is known, the state of the system is known.

STATE VARIABLES

Consider a 1-D mass

• 2nd order eqn:

$$m \cdot \ddot{s} = f$$

• System of 1st order eqn: $\begin{cases} \dot{s} = v \\ m \cdot \dot{v} = f \end{cases}$

$$\begin{cases} \dot{s} = v \\ m \cdot \dot{v} = f \end{cases}$$

$$\dot{\mathbf{x}} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ 1/m \end{pmatrix} \mathbf{f} \quad \rightarrow \quad \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \quad \rightarrow \quad \dot{\mathbf{x}} = \mathbf{y}(\mathbf{x}, \mathbf{u})$$

• Here x is the state vector $\binom{S}{n}$

STATE VARIABLES

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1/m \end{pmatrix} f \rightarrow \dot{x} = Ax + Bu \rightarrow \dot{x} = y(x, u)$$

When a numerical integration algorithm is applied (Explicit or Implicit)

$$\dot{x} = y(x, u) \rightarrow X_{n+1} = F(X_n, U_n) \text{ or } X_{n+1} = F(X_{n+1}, U_{n+1})$$

- Where X is the numerical solution
- This implies that you need initial conditions $X_{\mathbf{0}}$ for each state

STATE SELECTION

Consider a slider-crank mechanism:

What variable could be a state, x or phi?

10

phi

You must compute either:

Result phi

X

STATE SELECTION

Oscillating masses

$$f = d v_{12} + c s_{12}$$
$$s_2 = s_1 + s_{12}$$

Simulation results comparing absolute and relative coordinates

STATE SELECTION

• Can be influenced via attribute of real variables:

Real p(stateSelect = StateSelect.

- never
- avoid
- default
- prefer
- always);

STATE SELECTION - ADVICE

- Avoid state-selection in absolute variables
 - Relative states often numerically better than absolute ones
- In mechanics, rotational DOF is often a better state candidate than translational
- Avoid dynamic state selection
 - Use only to avoid otherwise unavoidable singularities
 - Dynamic state selection can not be combined with real-time solvers!

Copyright © 2022 Modelon

- A dynamic model describes how the states evolve with time
 - The states are the memory of the model; for example, in mechanical systems, positions and velocities
 - When starting a simulation, the states need to be initialized
- For an ordinary differential equation, ODE, in state space form:

$$dx/dt = f(x,t)$$

- the state variables, **x**, are free to be given initial values
- Initial values can be explicitly set for each state
- In many cases it is convenient to start at steady state
 - dx/dt = 0 is specified as an initial condition
 - Impact automatically calculates the initial values of **x** by solving:

$$0 = f(x, t)$$

- Most Modelica models have an option to either set an initial value or set an initial guess value.
 - Initial guess values are set when initializing in steady state.
 - Used as a starting point from where the solver tries to find a solution to f(x, t) = 0.
 - Choosing a reasonable guess value is important. Guess values too far away from the actual solution often cause the initialization to fail.
- Example: pipe with two defined pressures at the boundaries
 - Left side 2 bar, right side 1 bar

- Setting initial conditions:
 - The simulation starts with the set initial conditions.

Mass Flow Rate [kg/s]

- Steady-state initialization
 - At t=0 all derivatives equal zero

WORKSHOP 2.2

In this workshop you will:

- Investigate a-causal modeling
- Defining boundary conditions
- Model inversion

