TROUBLESHOOTING

Lecture 2.4

OVERVIEW

\/ Development - Best practice

\/ Troubleshooting

\/ Diagnostics
/hod

EIon_ Copyright © 2022 Modelon
e]]

BEST PRACTICE

Copyright © 2022 Modelon

SPECIFY

 When creating a new component or system, start by defining (at least) one test case that
specifies how the model should function:

o It should excite your model in a way you easily can verify
* For a spring, plot the force compression curve

o For some configurations, the result can be compared to an equivalent test using another model
* Ifitis anonlinear spring, parameterize as linear and compare with a standard linear spring.

o It excites the whole operating region of the model
* Make sure that the spring is tested for both rebound and compression

o It verifies the behavior under different causality conditions

* For a nonlinear gear, make sure that the results and the generated code is consistent,
independent of which flange is dependent on the other.

MLOdEIon_ Copyright © 2022 Modelon

IMPLEMENT

» Take advantage of the benefits of component oriented modeling, separate code into reusable
primitive models

e Use a base class that defines the relations between connectors, so that only the force-
compression relation has to be given for each new spring model
* Use types, units, enumerations and a stringent nomenclature
* “if spring_type == Types.Spring. NONLINEAR then ...” is easier to maintain and read than “if
spring_type == 1then ..”
* For a spring compatible with Modelica.Mechanics.Translational, use s for position, v for velocity,
a for acceleration and f for force.
* Define a model, either with components and connections, or with equations/algorithm:s.
* A mix between the concepts makes it much harder to understand and debug

MLOdEIon_ Copyright © 2022 Modelon

MAINTENANCE

Version your models
e Use a version management system, e.g. SVN, Git to be able to back-track changes

Collect test cases and reference trajectories systematically

 Once a model is finalized and the test results are fine, store the cases and the results for future
reference

Rerun the tests to detect unexpected changes/errors as early as possible

* A good practice is to rerun test either on a regular basis or when a change has been made to the
code

There are tools to support automation of the maintenance
 Modelon’s Model Testing Toolkit - MTT (cross platform regression testing)
* Integrate with Jenkins to automate the testing procedure

MLOdEIon_ Copyright © 2022 Modelon 6

Copyright © 2022 Modelon

TRANSLATION PROBLEMS

e Case: Cannot translate the model.

* Common issues:
* Missing class or parameter declaration
* Modifiers on missing parameters or components
* Missing connection
* Number of equations and variables do not match
* Modelica syntax problems
* Index reduction problems
* QOverspecified number of initial values
e Overspecified number of states

MLOdEIon_ Copyright © 2022 Modelon

FINDING THE PROBLEM

Read the Translation log
* Be aware of any Warnings given in the Translation log
* Try and see if you can locate the part of the model that does not work

Check your model
* Also try and check subparts of your model

When you isolate the part of the model that does not translate, it might be a good idea to
create a smaller test model for that part.

If the error is related to Modelica syntax, refer to:
* Modelica Language Specification

MLOdEIon_ Copyright © 2022 Modelon

SIMULATION PROBLEMS

e Case: The model translates but does not run properly.

* Common issues:
* |nitialization problems
e Convergence problems
* Solver finds the wrong initialization point
e Simulation does not finish due to:
* Convergence problems in nonlinear systems
* Singularities
* Too stiff, stepsize goes to zero
* Division by zero
* Unphysical results
* Missing parameter propagation
* Using wrong units
* Performance
e Simulation speed too slow

MLOdEIon_ Copyright © 2022 Modelon

10

Copyright © 2022 Modelon

SETTINGS THAT CONTROL DIAGNOSTICS

Application tab
* “Compiler Log Level” and “Simulation Log Level”
e Controls amount of information written to logs
Execution tab
* “generate html dignostics”

* Generates browsable pages containing information
about the compilation

* “dynamic diagnostics”

* Adds additional diagnostic variables to the result

/hodelon_

Copyright © 2022 Modelon

Application Execution Export

CANVAS

[
Show grid

Enable snapping

MODEL BROWSING

Show final parameters
Show disabled parameters

Enable autormatic propagation

MISC

Open dlass after creation o

Units Workspace

Compilation Log Level

Simulation Log Level

STEADY STATE

Enable steady state simulation [

Initialize from latest result by default

Application Execution Export

ﬂ(Dynamic O Steady State

SIMULATION OPTIONS

nep 500

dynamic_diagnostics

Units Workspace

‘\ Custom | Linearize -

COMPILER OPTIONS

generate _html_diagnostics)

include_protected —varatte

c_compiler gcc
+ Add new
+ Add new
SOLVER OPTIONS
. RUNTIME OPTIONS
+ Add new
+ Add new
]

- - - plant (simple drive train) S
« After Compilation and Simulation have finished, ~
compilation and simulation logs can be accessed by v

right clicking the result entry

* They also can be accessed from the logs bar at the

bottom of the canvas

SIMULATIONS v

View logs

il Result 1 e
Show simulation log

Show compilation log

¥ Download result
(] Only sk] View diagnostics
Rename

CALCULATED VALUES
B Dclete

Pl controller

wwwwwwwww

/hodelon_

Copyright © 2022 Modelon

13

SIMULATION LOG

* Contains selected solver options and

SIMULATION

Simulation successful

Log for: Case 1

Final Run Statistics: --—-

Number of steps : 710
Number of function evaluations 802
Number of Jacobian evaluations : 16
Number of function eval. due to Jaccbian ewval. =11

run statistics from the simulation if \ Namber of nenlinces iterations ! 77e
Number of nonlinear convergence failures H]
simulation run SUCCESSfU“y. Number of state function evaluaticns : 730

* In case of simulation failure, it will give
info about the error occurred.

* Errors found here includes:
* |nitialization failures
* Convergence failures
* Division by zero

* Assertion errors

/hodelon_

Number of state ewvents H
Number of time ewents 4

Simulation interval : 0.0 - 4.0 seconds.

Elapaed simulation time: 0.0925976922998786% seconds.

SIMULATION

| Simulation failed
Log for: Case 1

[Assertion Error]: msg = "
Temperature T (= 173.15 K} i=s not

in the allowed range (272.15 K <= T <= 403.15 E)
reguired from medium model ""SimpleliguidWater"™".
"

Initialization failed.

Copyright © 2022 Modelon

'

Download Log

Solwer : CWVode

Linear multistep method : BDF

HNonlinear solver i Newton

Linear solver type : DENSE

Maximal order HE=

Tolerances (absolute) : [l.e-06 l.e-0€ l.e-06 1l.e-10 1l.2-0&6 1l.e-08]
Tolerances (relatiwve) : le-08

e

Download Log

COMPILATION LOG

* Contains output from the compilation
process according to log level set.

COMPILATION v

* ErrO rS fOU nd here inCI UdeS: | Compilation failed Download Log

i Syntax errors ;v:"-*'_in :'ls.;ta:;ci model:

Index reduction failed: There were unmatched equations and/or wvariables left after index

Error in flattened model:
i Structu ral errors The system is structurally singular. The folleowing wariable (s) could net be matched to any

equaticn:
der{spring.w_rel}
Pl.u_s

* Missing connections

The following egquaticn(=s) could net be matched to any variable:
spring.phi rel = inertia2.phi - inertial.phi

* Number of equations and
variables do not match

* Index reduction problems

* Over specified number of initial
values 5

ﬂl«Ode,Oﬂ_ Copyright © 2022 Modelon

DYNAMIC DIAGNOSTICS

CALCULATED VALUES

If “dynamic diagnostics” is activated:

* Extra diagnostic variables are added to the result:

* cpu_time: elapsed cpu time “F
* nbr_events: number of events triggered e
* nbr_state_limits_step: number of times the error o e e
of a step limited the step size of the solver. -
» state_errors: error estimates of all state variables
* Like any other variable, drag the diagnostic variable
to canvas to plot or add a sticky. T

(@Diagnostics

MLOdEIon_ Copyright © 2022 Modelon

16

ADVANCED MODEL DIAGNOSTICS

COMPILER OPTIONS

generate_html_diagnostics

If “generate html dignostics” is activated:

e Additional compilation diagnostics and information is available from “View diagnostics”:

SIMULATIONS

il Result 1

CALCULATED VALUES

Model Statistics for Workspace.Tanks

Mote: Some diagnostics are omitted since the compiled model contains encrypted components

6 warnings 0 errors
» Model Structure

» State variables A
» Initialization equation blocks Olinear / 1 non-linear
» Equation blocks 0 linear / 1 non-linear

MOdEIon_ Copyright © 2022 Modelon

17

ADVANCED MODEL DIAGNOSTICS: OVERVIEW

e Lists all compiler errors and warnings that
occurred during compilation (same as
compilation log).

* |Information about the model structure such
es etc.

as number of equations, variabl/
* List of selected state variables /

* Information about initialization equation
system

* Information about equation systems in
model

/I/lod

elon_
e

Copyright © 2022 Modelon

Model Statistics for Workspace.Tanks

Note: 5ome diagnostics are omitted since the compiled model contains encrypted components

6 warnings O errors

» Model Structure

> State variables &
> Initialization equation blocks 0 linear / 1 non-linear
» Equation blocks 0 linear / 1 non-linear

18

ADVANCED MODEL DIAGNOSTICS: MODEL STRUCTURE

Model Structure:
e Summary statistics of the compiled model after transformation

Full statistics:

* Full model statistics from before and after transformation.
Model before transformation:
* Summarizes model statistics of the flattened model.
Model after transformation:

e Summarizes the statistics of the model after the compiler
has completed the transformation work (alias elimination
etc.)

¥ Model Structure
Total size

Constants
Parameters

Variables

Full statistics

Flattened model code

Flattened model code:
* Displayed flattened model code. The flattening process includes:
* Expandinginherited classes (extend statements)
* Replacing connect statements with actual equations

o Etc.

/I/lodelon_

Copyright © 2022 Modelon

19

ADVANCED MODEL DIAGNOSTICS: STATE VARIABLES

e Lists selected state variables

* Check so that the states selected are the

expected ones. See lecture 2.2 for some ¥ State variables L
advice about state selection. Continuous i
State variable nominal
0 tank.level
1 tank.medium.T 300
2 tank2.level
3 tank2.medium.T 300
Discrete 0

/hod

Copyright © 2022 Modelon

20

elon_
e]] [

ADVANCED MODEL DIAGNOSTICS: EQUATION BLOCKS

(Initialization) Equation blocks:

* Displays detailed information about existing equation
blocks in the model.

* Non-linear equation blocks require iterative
algorithms to be solved which effect both
simulation speed and robustness (might not be
able to find solution)

* |f possible, these should be kept to a
minimum

Modelica text & Interactive matrix

v Initialization equation blocks
0 Linear initialization equation blocks

Block sizes: []

1 Non-linear initialization equation blocks

Block sizes: [5]
Modelica text
Interactive matrix
¥ Equation blocks
0 Linear equation blocks
Block sizes: []

1 Non-linear equation blocks

Block sizes;|

* All equations and equation blocks are listed and sorted in
the order in which they are calculated, i.e., by

e Can be viewed both in text form (Modelica text)
and block-lower triangular form (Interactive
matrix)

/I/lodelon_

Modelica text

Interactive matrix

Hover to get details about equation block

O linear / 1 non-linear

O linear / 1 non-linear

0 Linear equatio Iteration

Block sizes: [] variable

1 Non-linear equ

Block sizes: [5] 1 tanks[1]

Modelica text 2 pipe.port_b.p

Interactive matrix 3 pipeport_a.p

4pipe2.port_bp

Copyright © 2022 Modelon

¥ Equation blocks o, inear Equation System Block 1
start min max nominal

0 tank2s[1] tank2.fluidLevel max -
tank.fluidLevel _max -

100000.0 0 1.0EE100000.0
100000.0 0 1.0EE100000.0
100000.0 0 1.0E8100000.0

WORKSHOP 2.4

In this workshop you will:
* Look at a simple steady state example
* Inspect the model using “HTML diagnostics”

ﬂl«Ode,Oﬂ_ Copyright © 2022 Modelon

22

	Slide 1: Troubleshooting
	Slide 2: overview
	Slide 3: Development Best practice
	Slide 4: Specify
	Slide 5: Implement
	Slide 6: Maintenance
	Slide 7: Troubleshooting
	Slide 8: Translation problems
	Slide 9: Finding the problem
	Slide 10: Simulation problems
	Slide 11: diagnostics
	Slide 12: Settings that control diagnostics
	Slide 13: Accessing logs
	Slide 14: Simulation Log
	Slide 15: Compilation Log
	Slide 16: Dynamic diagnostics
	Slide 17: Advanced model diagnostics
	Slide 18: Advanced model diagnostics: Overview
	Slide 19: Advanced model diagnostics: Model structure
	Slide 20: Advanced model diagnostics: State Variables
	Slide 21: Advanced model diagnostics: Equation blocks
	Slide 22: Workshop 2.4

