
TROUBLESHOOTING
Lecture 2.4

OVERVIEW

Copyright © 2022 Modelon 2

Development - Best practice

Troubleshooting

Diagnostics

DEVELOPMENT

BEST PRACTICE

Copyright © 2022 Modelon 3

• When creating a new component or system, start by defining (at least) one test case that
specifies how the model should function:

o It should excite your model in a way you easily can verify

• For a spring, plot the force compression curve

o For some configurations, the result can be compared to an equivalent test using another model

• If it is a nonlinear spring, parameterize as linear and compare with a standard linear spring.

o It excites the whole operating region of the model

• Make sure that the spring is tested for both rebound and compression

o It verifies the behavior under different causality conditions

• For a nonlinear gear, make sure that the results and the generated code is consistent,
independent of which flange is dependent on the other.

SPECIFY

Copyright © 2022 Modelon 4

• Take advantage of the benefits of component oriented modeling, separate code into reusable
primitive models

• Use a base class that defines the relations between connectors, so that only the force-
compression relation has to be given for each new spring model

• Use types, units, enumerations and a stringent nomenclature

• “if spring_type == Types.Spring.NONLINEAR then ...” is easier to maintain and read than “if
spring_type == 1 then ...”

• For a spring compatible with Modelica.Mechanics.Translational, use s for position, v for velocity,
a for acceleration and f for force.

• Define a model, either with components and connections, or with equations/algorithms.

• A mix between the concepts makes it much harder to understand and debug

IMPLEMENT

Copyright © 2022 Modelon 5

• Version your models

• Use a version management system, e.g. SVN, Git to be able to back-track changes

• Collect test cases and reference trajectories systematically

• Once a model is finalized and the test results are fine, store the cases and the results for future
reference

• Rerun the tests to detect unexpected changes/errors as early as possible

• A good practice is to rerun test either on a regular basis or when a change has been made to the
code

• There are tools to support automation of the maintenance

• Modelon’s Model Testing Toolkit - MTT (cross platform regression testing)

• Integrate with Jenkins to automate the testing procedure

MAINTENANCE

Copyright © 2022 Modelon 6

TROUBLESHOOTING

Copyright © 2022 Modelon 7

• Case: Cannot translate the model.

• Common issues:

• Missing class or parameter declaration

• Modifiers on missing parameters or components

• Missing connection

• Number of equations and variables do not match

• Modelica syntax problems

• Index reduction problems

• Overspecified number of initial values

• Overspecified number of states

TRANSLATION PROBLEMS

Copyright © 2022 Modelon 8

• Read the Translation log

• Be aware of any Warnings given in the Translation log

• Try and see if you can locate the part of the model that does not work

• Check your model

• Also try and check subparts of your model

• When you isolate the part of the model that does not translate, it might be a good idea to
create a smaller test model for that part.

• If the error is related to Modelica syntax, refer to:

• Modelica Language Specification

FINDING THE PROBLEM

Copyright © 2022 Modelon 9

• Case: The model translates but does not run properly.

• Common issues:
• Initialization problems

• Convergence problems
• Solver finds the wrong initialization point

• Simulation does not finish due to:
• Convergence problems in nonlinear systems
• Singularities
• Too stiff, stepsize goes to zero
• Division by zero

• Unphysical results
• Missing parameter propagation
• Using wrong units

• Performance
• Simulation speed too slow

SIMULATION PROBLEMS

Copyright © 2022 Modelon 10

DIAGNOSTICS

Copyright © 2022 Modelon 11

SETTINGS THAT CONTROL DIAGNOSTICS

Copyright © 2022 Modelon

Application tab

• “Compiler Log Level” and “Simulation Log Level”

• Controls amount of information written to logs

Execution tab

• “generate_html_dignostics”

• Generates browsable pages containing information

about the compilation

• “dynamic_diagnostics”

• Adds additional diagnostic variables to the result

12

ACCESSING LOGS

Copyright © 2022 Modelon

• After Compilation and Simulation have finished,

compilation and simulation logs can be accessed by

right clicking the result entry

• They also can be accessed from the logs bar at the

bottom of the canvas

13

SIMULATION LOG

Copyright © 2022 Modelon

• Contains selected solver options and

run statistics from the simulation if

simulation run successfully.

• In case of simulation failure, it will give

info about the error occurred.

• Errors found here includes:

• Initialization failures

• Convergence failures

• Division by zero

• Assertion errors

14

COMPILATION LOG

Copyright © 2022 Modelon

• Contains output from the compilation

process according to log level set.

• Errors found here includes:

• Syntax errors

• Structural errors

• Missing connections

• Number of equations and

variables do not match

• Index reduction problems

• Over specified number of initial

values

15

If “dynamic_diagnostics” is activated:

• Extra diagnostic variables are added to the result:

• cpu_time: elapsed cpu time

• nbr_events: number of events triggered

• nbr_state_limits_step: number of times the error
of a step limited the step size of the solver.

• state_errors: error estimates of all state variables

• Like any other variable, drag the diagnostic variable
to canvas to plot or add a sticky.

DYNAMIC DIAGNOSTICS

16Copyright © 2022 Modelon

ADVANCED MODEL DIAGNOSTICS

Copyright © 2022 Modelon

If “generate_html_dignostics” is activated:

• Additional compilation diagnostics and information is available from “View diagnostics”:

17

ADVANCED MODEL DIAGNOSTICS: OVERVIEW

Copyright © 2022 Modelon

• Lists all compiler errors and warnings that

occurred during compilation (same as

compilation log).

• Information about the model structure such

as number of equations, variables etc.

• List of selected state variables

• Information about initialization equation

system

• Information about equation systems in

model

18

ADVANCED MODEL DIAGNOSTICS: MODEL STRUCTURE

19Copyright © 2022 Modelon

Model Structure:

• Summary statistics of the compiled model after transformation

Full statistics:

• Full model statistics from before and after transformation.

Model before transformation:

• Summarizes model statistics of the flattened model.

Model after transformation:

• Summarizes the statistics of the model after the compiler

has completed the transformation work (alias elimination

etc.)

Flattened model code:

• Displayed flattened model code. The flattening process includes:

• Expanding inherited classes (extend statements)

• Replacing connect statements with actual equations

• Etc.

ADVANCED MODEL DIAGNOSTICS: STATE VARIABLES

20Copyright © 2022 Modelon

• Lists selected state variables

• Check so that the states selected are the

expected ones. See lecture 2.2 for some

advice about state selection.

ADVANCED MODEL DIAGNOSTICS: EQUATION BLOCKS

21Copyright © 2022 Modelon

Hover to get details about equation block

(Initialization) Equation blocks:

• Displays detailed information about existing equation

blocks in the model.

• Non-linear equation blocks require iterative

algorithms to be solved which effect both

simulation speed and robustness (might not be

able to find solution)

• If possible, these should be kept to a

minimum

Modelica text & Interactive matrix

• All equations and equation blocks are listed and sorted in

the order in which they are calculated, i.e., by

• Can be viewed both in text form (Modelica text)

and block-lower triangular form (Interactive

matrix)

In this workshop you will:

• Look at a simple steady state example

• Inspect the model using “HTML diagnostics”

WORKSHOP 2.4

Copyright © 2022 Modelon 22

	Slide 1: Troubleshooting
	Slide 2: overview
	Slide 3: Development Best practice
	Slide 4: Specify
	Slide 5: Implement
	Slide 6: Maintenance
	Slide 7: Troubleshooting
	Slide 8: Translation problems
	Slide 9: Finding the problem
	Slide 10: Simulation problems
	Slide 11: diagnostics
	Slide 12: Settings that control diagnostics
	Slide 13: Accessing logs
	Slide 14: Simulation Log
	Slide 15: Compilation Log
	Slide 16: Dynamic diagnostics
	Slide 17: Advanced model diagnostics
	Slide 18: Advanced model diagnostics: Overview
	Slide 19: Advanced model diagnostics: Model structure
	Slide 20: Advanced model diagnostics: State Variables
	Slide 21: Advanced model diagnostics: Equation blocks
	Slide 22: Workshop 2.4

