
MODELICA LANGUAGE
EQUATION BASED COMPONENTS

Lecture 3.1

• Modelica class container

• Accessing the source code

• Modelica at a glance

• Variables and types

• Arrays and matrices

• Equation and algorithm

• Operators and statements

• Connectors and connect()

• Balancing concept and partial

• Inheritance v/s Instantiation

OVERVIEW

Copyright © 2022 Modelon 2

MODELICA CLASS CONTAINER

Copyright © 2022 Modelon 3

• Modelica classes are containers with information, defined by the Modelica Language Specification

CLASSES – INFORMATION CONTENT

Copyright © 2022 Modelon

class

behavior

documentation

icon

Modelica code

annotations

meta data

Source code
editor

Documentation
editor

Icon editor

Source code
editor

EditorContentLocation

4

DIFFERENT KEYWORDS FOR CLASSES

5Copyright © 2022 Modelon

• class: any object is a class – used only when unspecific, e.g. documentation classes

• package: container for more classes – used to structure a set of models or a set of properties
(e.g. fluid properties). Can only contain classes and constants

• connector: defines interfaces of models

• model: main class for physical behavior representation, using equations

• block: class for block diagrams – require input/output connectors

• function: to implement algorithm that relate output to input variables

• record: container for variables of any variability

• type: “refined class” so that its instance would be more specific – e.g. enumeration.

• (operator: mostly used for building blocks of your model – e.g. Complex())

WHAT A MODEL SHOULD CONTAIN

6Copyright © 2022 Modelon

1. Modelica code

2. Documentation

3. Icon

4. Graphical representation

For a model, documentation should contain
the experimental frame!

ACCESSING THE SOURCE CODE

Copyright © 2022 Modelon 7

• Modelon Impact provides a code editor to edit the Modelica source code

• Accessed through toolbar:

SOURCE CODE EDITOR

Copyright © 2022 Modelon 8

• Basic functionality

• Includes syntax check

• Syntax needs to be ok
to be able to save
changes.

CODE EDITOR

Copyright © 2022 Modelon

Navigate class history

Find
Replace

Jump to line

Change editor theme

CTRL+Click to navigate to class
(follow link)

9

Undo/Redo

• Checks semantics, and local
balance of variables and
equations

LOCAL BALANCE CHECK

10Copyright © 2022 Modelon

MODELICA AT A GLANCE

Copyright © 2022 Modelon 11

MODELICA AT A GLANCE

12Copyright © 2022 Modelon

• Object-oriented → signalVoltage.V

• Acausal → U = R*I (no need to provide variants I := U/R or R = U/I)

• Type-based → Real vs Integer vs Boolean vs Modelica.SIunits.Voltage

• More complex structures such as partial, replaceable model etc.

The model class is divided into two main sections
1. before the equation keyword

contains all component, parameters, inputs, outputs and variable
declarations

2. after the equation keyword
contains all equations and connects

VARIABLES AND TYPES

Copyright © 2022 Modelon 13

• Available default variable types:
• Real floating point variable, e.g. 1.0, -2.3e-5
• Integer integer variable, e.g. 1, 4, -333
• Boolean boolean variable, e.g. false, true
• String string, e.g. "from file:“

• Attributes of Real variables:
• quantity type of physical quantity
• unit unit used in equations
• displayUnit used in dialogs and postprocessing
• min minimal value of quantity
• max maximum value of quantity
• nominal used for scaling in numerical routines

VARIABLE DECLARATIONS

Copyright © 2022 Modelon 14

• Mars Climate Orbiter Failure Board Release Report, Nov. 10, 1999:

"The 'root cause' of the loss of the spacecraft was the failed translation of English units into
metric units in a segment of ground-based, navigation-related mission software, as NASA has
previously announced," said Arthur Stephenson, chairman of the Mars Climate Orbiter Mission
Failure Investigation Board.

Ref:

https://www.jpl.nasa.gov/missions/mars-climate-orbiter

WHY FOCUS ON UNITS?

Copyright © 2022 Modelon 15

• Modelica.SIunits contains all 450 ISO-standard units as predefined variable types.

VARIABLE DECLARATIONS

Copyright © 2022 Modelon 16

• Declarations using SI units package:

• In order to avoid repeating the package name at each declaration, create a package shortcut:

VARIABLE DECLARATIONS

Copyright © 2022 Modelon 17

• Time variability is set with a variable prefix:

• no prefix variable can change with time

• parameter parameter constant with time, may be modified

• constant constant constant with time, may not be modified

• In a component of the model above only d, rho and c can be modified at the container level

• A default equation may be added for the parameter declarations

VARIABLE DECLARATIONS

Copyright © 2022 Modelon 18

• The model shall describe a spherical capacitance. Its mass is computed from diameter d and
density rho:

• In order to prevent it from appearing in the parameter dialog of the corresponding component
and being modified with an inconsistent value, m received the final prefix

• The variables used in the default equation must not have a higher variability than the declared
variable itself, i.e., for parameters only parameters and constants are allowed

VARIABLE DECLARATION

Copyright © 2022 Modelon 19

ARRAYS AND MATRICES

Copyright © 2022 Modelon 20

ARRAYS AND MATRICES

Copyright © 2022 Modelon

Declaration of multidimensional arrays:

{} is array constructor of arrays with arbitrary dimension.

[] generates matrices, and acts as concatenation operator.










232221

131211










232221

131211

1
2
3

21

ARRAYS AND MATRICES

Copyright © 2022 Modelon

“:” in the declaration section is used, when size of the array is undefined

Extraction mechanism of sub-matrices as in Matlab:

Access to matrix elements:

Vector constructor normally used to generate an indices-vector:

22

• Operations according to standard mathematics. Compared to e.g. Matlab, it is worth noticing
that Modelica handles physical vectors, i.e.:

vector*vector = scalar [for ex:{1,2,3}*{4,5,6} = 32]

matrix*vector = vector [for ex:[1,2,3;4,5,6]*{1,2,3}={14, 32}]

vector*matrix = vector [for ex:{1,2,3}*[4;5;6]={32}]

matrix*matrix = matrix [for ex:[1;2]*[3,4]=[3, 4;6, 8]]

• Creating an array of a general expression with an array constructor:

ARRAYS AND MATRICES

Copyright © 2022 Modelon 23

EQUATIONS AND ALGORITHMS

Copyright © 2022 Modelon 24

• Equations are added in the equation section after the equation keyword

• time is a global built-in variable

• Differential equations are expressed with the der-operator. It denotes the time derivative of
the expression:

• Order of equations and which of the variables are located on the left or right-hand side of the
equality sign is irrelevant

EQUATIONS

Copyright © 2022 Modelon 25

• The example model has two time-varying variables and just one equation. The heat flow rate is
determined outside the capacitance and shall cross its boundary through a connector.

1. On the modeling canvas, drag in a component of the connector class
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a

2. Create a relationship between connector variables and variables declared in the model

INCLUDING CONNECTORS

Copyright © 2022 Modelon 26

• Integrated variables require a start value, to solve the initial time problem

• They are set in an initial equation section, which is only evaluated at time = 0

• It is common practice to introduce a start value parameter, here T_start, which can be
propagated through the component levels.

INITIALIZATION

Copyright © 2022 Modelon 27

• Alternative way to set start values:

set start-attribute in variable declaration

▪ Difference to initial equations:

• the start-attribute value is only used as an initial value of variable T if this is a state variable,
i.e. an integration variable in the numerical solver. By setting fixed=true it generates an
initial equation.

• if the start-attribute is set for an algebraic variable, this value may be used by the solver as a
guess value for iteration variables in non-linear initial equations.

• The number of equations in the initial equation section is restricted to the degrees of
freedom of the simulation experiment, i.e. the number of state variables. (Same holds for
the number of fixed=true)

INITIALIZATION, FIXED =TRUE/FALSE

Copyright © 2022 Modelon 28

• The standard way in Modelica is to write equations, but also algorithms can be used, instead of
‘equation’ use ‘algorithm’ and instead of ‘=’ use ‘:=‘.

• Algorithms are treated as a sequence of assignments.

• It is possible to use both an algorithm section and equation sections in the same model, but
maximum one algorithm section.

• A value that is not assigned in an algorithm is assumed to be zero. There is no error message!

ALGORITHMS

Copyright © 2022 Modelon 29

• The syntax is (same for both algorithm and equation)

IF STATEMENTS / FOR LOOPS

Copyright © 2022 Modelon

NOTE: in equation sections, number of variables and equations must match,
so no overwriting is possible.

30

OPERATORS AND STATEMENTS

Copyright © 2022 Modelon 31

DEVELOPING MODELS BY CODING

32Copyright © 2022 Modelon

Equations are written in the equation section

• der() → operator to indicate a time derivative of a variable

• connect() → operator to describe a connection between connectors
connect() corresponds to a set of equations (discussed in part 2)

• if-, when-, while-statements etc. can be included

equation

derivative of current i

CONNECTORS AND CONNECT()

Copyright © 2022 Modelon 33

• To make the components interact with each other, we need clear interfaces: Connectors

• Key for the connector concept is the difference between potential and flow variables

• Each component must have a set of equations that uniquely define its behavior based on its
interfaces and initial conditions.

• The components and the connectors need to be balanced, i.e. the number of unknowns and
equations must match.

• In a Modelica connector, a variable with the flow prefix is a flow variable, and a variable
without a prefix is a potential variable.

CONNECTORS

Copyright © 2022 Modelon 34

POTENTIAL AND FLOW VARIABLES

Copyright © 2022 Modelon

Generated equations from connection:
R_1.pin.v = R_2.pin.v

R_1.pin.v = R_3.pin.v

R_1.pin.i + R_2.pin.i + R_3.pin.i = 0

0321

321

=++

==

iii

vvv
Potential: n-1 equations
per connection set

Flow: 1 equation per
connection set

i1 i2

i3

v1

v3

v2

Electrical

Connector:

Modelica:

35

0321

321

=++

==

fff

sss
Potential: n-1 equations
per connection set

Flow: 1 equation per
connection set

POTENTIAL AND FLOW VARIABLES

Copyright © 2022 Modelon

Generated equations from connection:
m1.flange.s = m2.flange.s

m1.flange.s = m3.flange.s

m1.flange.f + m2.flange.f + m3.flange.f = 0

f1 f3

f2

s1

s2

s3

1D-mechanical

Connector:

Modelica:

36

Heat transfer

Rotational

POTENTIAL AND FLOW VARIABLES

Copyright © 2022 Modelon

thermalC1.heatPort_b.T = thermalC2.heatPort_a.T

thermalC1.heatPort_b.Q_flow + thermalC2.heatPort_a.Q_flow = 0

connector Flange

Angle phi;

flow Torque tau;

end Flange;

connector HeatPort

Temperature T;

flow HeatFlowRate Q_flow;

end HeatPort;

inertia1.flange_a.phi = inertia2.flange_b.phi

inertia2.flange_a.tau + inertia2.flange_b.tau = 0

37

BALANCING CONCEPT AND PARTIAL

Copyright © 2022 Modelon 38

• A balanced model provides a set of equations so that either the flow or the potential variable
can be solved for.

• In Modelica, all models should be “locally balanced”

• A model build from locally balanced sub-models is also balanced.

• This in turn requires that each connector has the same amount of flow and potential variables.

BALANCED MODELS

Copyright © 2022 Modelon 39

• In the examples below, each component has two connectors, each with one flow/potential
variable. So two equations are needed, one for each flow/potential variable.

BALANCED MODELS

Copyright © 2022 Modelon 40

• How are the number of equations and unknown calculated?

• Model Resistor is balanced:

BALANCED MODELS

Copyright © 2022 Modelon

Unknowns:

p.i, p.v, n.i, n.v

Equations:

p.i + n.i = 0;

p.v - n.v = R*n.i;

+ 2 eqn for flow-variables

p.i and n.i,

when you check for local

balance

41

• Not all models have a relation between flow and potential, e.g. an electrical ground or a mechanical
fixed:

• As a result, these components cannot be connected to each other.

• The same holds for a model that directly supplies flow information, e.g. different types of sources.

BALANCED MODELS

Copyright © 2022 Modelon

model Fixed

..

equation

flange_a.s = 0;

end Fixed;

model Ground

..

equation

p.v = 0;

end Ground;

42

INHERITANCE V/S INSTANTIATION

Copyright © 2022 Modelon 43

OBJECT-ORIENTATION

44Copyright © 2022 Modelon

• Extends

Extends brings the extended code at the same level.

• Instantiation

Instantiate brings the code one level below.
Accessed through dot notation.

Can be instantiated several times
(with different name).

connector

partial model

(base class or template)

DEVELOPING MODELS BY CODING

45Copyright © 2022 Modelon

Developing model using Modelica code

• Should be only when necessary (or for fun)

• Should reuse existing base classes as much as possible

• Requires much maintenance work and testing

Extension v/s Instantiation

• extends Modelica.Electrical.Analog.Interfaces.TwoPin

• Model inherit all content from the extended classes (interfaces, equations, icon etc.)

• All code from TwoPin will be inlined in the model

• Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltage

• Creates an instance of SignalVoltage called signalVoltage

• Accessing variables of the instance through dot notation (e.g. signalVoltage.v)

OBJECT-ORIENTATION

46Copyright © 2022 Modelon

When to do what?

• Extend:

• Interfaces, templates, icons → common parts, partial

• Physical effects → abstraction of a phenomena

• Flat model and results

• Instantiate:

• Models, Records, etc. → container / entity

• “Physical components” → model composition representing user expectations

• Structured model and results

In this workshop you will:

• Create a simple cake model

WORKSHOP 3.1

Copyright © 2022 Modelon 47

	Default Section
	Slide 1: MODELICA Language equation based components
	Slide 2: overview

	Modelica class container
	Slide 3: Modelica class container
	Slide 4: Classes – Information content
	Slide 5: Different Keywords for Classes
	Slide 6: What a model should contain

	Accessing source code
	Slide 7: Accessing the source code
	Slide 8: Source Code editor
	Slide 9: Code Editor
	Slide 10: Local balance check

	Modelica at a glance
	Slide 11: Modelica at a glance
	Slide 12: Modelica at a glance

	Variables and types
	Slide 13: Variables and types
	Slide 14: Variable declarations
	Slide 15: Why focus on units?
	Slide 16: Variable declarations
	Slide 17: Variable declarations
	Slide 18: Variable declarations
	Slide 19: Variable declaration

	Arrays and matrices
	Slide 20: Arrays and matrices
	Slide 21: Arrays and matrices
	Slide 22: Arrays and matrices
	Slide 23: Arrays and matrices

	Equations and algorithms
	Slide 24: Equations and algorithms
	Slide 25: Equations
	Slide 26: Including connectors
	Slide 27: Initialization
	Slide 28: Initialization, fixed =true/false
	Slide 29: Algorithms
	Slide 30: if statements / for loops

	Operators and statements
	Slide 31: Operators and Statements
	Slide 32: Developing models by coding

	Connectors and connect()
	Slide 33: Connectors and Connect()
	Slide 34: Connectors
	Slide 35: Potential and flow variables
	Slide 36: Potential and flow variables
	Slide 37: Potential and flow variables

	Balancing concept and partial
	Slide 38: Balancing concept and partial
	Slide 39: Balanced models
	Slide 40: Balanced models
	Slide 41: Balanced models
	Slide 42: Balanced models

	Inheritances v/s instantiation
	Slide 43: Inheritance v/s Instantiation
	Slide 44: Object-orientation
	Slide 45: Developing models by coding
	Slide 46: Object-orientation

	Workshop
	Slide 47: Workshop 3.1

