
MODELICA LANGUAGE
ADVANCED FEATURES

Lecture 3.2

• Encapsulation

• Advanced connectors

• Stream connectors

• Overdetermined connectors

• Bus connector

OVERVIEW

Copyright © 2022 Modelon 2

ENCAPSULATION

Copyright © 2022 Modelon 3

• J occurs several times in this model

• J in elasticShaft

• J in inertia1

• J in inertia2

• These are individual instances:

• inertia1 and inertia2 are instances of a class:

• All variable and parameters in inertia1 and inertia2 are encapsulated within that class.

• In order to pass information in or out of the class you need to “break” the encapsulation.

ENCAPSULATION

4Copyright © 2022 Modelon

• There are three standard methods for “breaking” the encapsulation

• Modifiers (to change an instance default parameter values)

• Dot notation (to retrieve values from within an instance)

• Inner/outer (creates a global object, centralized place to retrieve information)

ENCAPSULATION

5Copyright © 2022 Modelon

• Set properties of a component from the
container level

1. Double click on component in diagram
layer of container class

2. Fill in parameter dialog (Properties), here,
parameter J receives value 2

• Modelica text view:

BREAKING ENCAPSULATION: MODIFIERS

Copyright © 2022 Modelon 6

• Modifications are valid only within the container class they have been performed in

BREAKING ENCAPSULATION: MODIFIERS

Copyright © 2022 Modelon

• Example: A model ControlledMotor, which
contains a component motor, which contains a
component inertia

• Modify parameter J in inertia two levels below

1. Navigate down one level into component
motor, using Inspect Component

2. Double-click on component inertia to bring up
its parameter dialog

3. set parameter J

• Modelica text view:

model ControlledMotor
ElectricalMotor motor(inertia(J=2));

...

• Modification only valid for this specific motor
component, not the motor class in general

7

• Retrieving components (incl. variables) further down the hierarchy is done using the
component names separated by dots:
• motor.inertia.flange_a.tau translates into: the component (or variable) tau inside the component
flange_a inside the component inertia inside the component motor

• Applies especially to variables, since they are usually determined in model equations at the base level and
retrieved to be used at a higher hierarchical level

• Example: Add up all heat flows transferred in individual channels of a heat exchanger to give the total
transferred heat

BREAKING ENCAPSULATION: DOT-NOTATION

Copyright © 2022 Modelon

model HeatExchanger

Real Q_flow ”Total heat flow rate”;

Channel ch1 ”First channel”;

Channel ch2 ”Second channel”;

...

equation

Q_flow = ch1.Q_flow + ch2.Q_flow;

...

end HeatExchanger;

8

• Connections automatically create a relationship between connector variables of connected
components

▪ The connector itself (e.g. flange_a) is a component inside a component (e.g. inertia)

▪ When drawing a connection between two components the corresponding text view is for
example:

connect(idealGear.flange_b, inertia.flange_a);

▪ Dot-notation access of the connector components at the level, where the connection is made

BREAKING ENCAPSULATION: DOT-NOTATION

Copyright © 2022 Modelon 9

• Insert dot-notation component reference as a
modifier

• Retrieve parameter/variable from one component
and use as modifier in another
• Double-click on the parameter field to select

current value

• Navigate the appearing component tree to the
correct parameter/variable

• The reference appears in dot-notation in the
parameter field

• If names are known, the reference can be written
manually

• Bad system design, if used extensively

• Propagate to top level and modify from there
instead

BREAKING ENCAPSULATION: COMBINATIONS

Copyright © 2022 Modelon 10

• Some type of information needs to be passed to all through the system to many components

• Examples: Ambient conditions, coordinate systems, gravity, magnetic fields

• inner/outer prefix is used in modelica to define a globally accessible object.

• inner keyword creates an instance which is accessible by all components at a lower hierarchical level

• Any outer component defined at a lower hierachical level will access the inner component

BREAKING ENCAPSULATION: INNER/OUTER

Copyright © 2022 Modelon

system component in
Fluids package
• gravity, global system

settings, ambient
conditions

world component in
Mechanics.Multibody package
• gravity, coordinate system

11

• The Body1 and Body2 instances, contains World objects with outer prefix, that refers to the
component world with inner prefix in class MultibodyExample.

BREAKING ENCAPSULATION: INNER/OUTER

Copyright © 2022 Modelon

MultibodyExample

inner Multibody.World world

Mechanism

Body1

outer World world

12

Part1

Body2

outer World world

BREAK ENCAPSULATION: SUMMARY

• Modifiers
▪ set a variable/parameter
▪ one declaration can be passed on to several

sub-components
▪ especially used for parameter propagation

from top level of a component to sub-
components

• dot-notation
▪ retrieve a variable/parameter
▪ access sub-component variables and

components from higher level container
classes

• inner/outer declarations
▪ automatic equality from matching

component names regardless of number of
component levels

Copyright © 2022 Modelon 13

STREAM CONNECTORS

Copyright © 2022 Modelon 14

• Consider a system with a fluid, which flows from one component to another, both directions are
possible.

• Pressure and mass flow rate are a potential/flow variable pair, since a pressure potential drives
the fluid flow.

• But what can we match properties with, that are transported by the flow, like specific enthalpy
or concentrations? We could add “false” partners, like enthalpy flow rate or species flow rates.

• What happens to the properties at the connection point if the flow switches direction? They
would need to switch discontinuously, not nice for model robustness.

STREAMS

Copyright © 2022 Modelon

a a bb

pipe1 pipe2

15

• Solution

• Stream variables in the connector
connector FluidPort

Modelica.SIunits.Pressure p;

flow Modelica.SIunits.MassFlowRate m_flow;

stream Modelica.SIunits.SpecificEnthalpy h;

end FluidPort;

• one flow variable, one potential variable and an arbitrary number of stream variables

• no equations are generated for the stream variables, when connected

STREAMS

Copyright © 2022 Modelon

a a bb

pipe1 pipe2

b.h ≠ a.h

h h

16

• If no additional equation is generated, how is then information passed across a connection?

• Operators, that can be applied to stream variables in a connector

• inStream() – accesses the connector variable “on the other side”

▪ independent of flow direction

▪ e.g. inside pipe1 the expression inStream(b.h) will yield the value of pipe2.a.h

• actualStream() – accesses the upstream connector variable

▪ discontinuously switching with flow direction, but yields continuous expression, if used in
combination with the flow variable

▪ e.g. in the energy balance of pipe1 or pipe2:
• dU/dt=a.m_flow*actualStream(a.h)+b.m_flow*actualStream(b.h)

• This is covered in detail in Thermo-Fluid Modeling Course

STREAMS

Copyright © 2022 Modelon

a a bb
pipe1 pipe2h h

17

OVERDETERMINED CONNECTORS

Copyright © 2022 Modelon 18

• Overdetermined connectors contain more connector variables than degrees of freedom needed
(e.g. in the MultiBody Frame connector).

• Instead of using 3 rotational variables to describe frame orientation the connector stores the
complete rotation matrix and the angular velocity vector. (3 vs 12 variables)

• This was introduced as a more efficient implementation

• To be able to compare two frames there is a need to implement a constraint function that
compares two rotation objects each with 12 variables and returns a residual with length 3.

OVERDETERMINED CONNECTORS

Copyright © 2022 Modelon 19

• The redundant information needs to be presented in the connector as a record together with
the constraint function:

• The output of the equalityConstraint function is a Real[3] which matches the size of the torque.
(The position and force match as they are)

• Note that such functions tend to generate nonlinear systems of equations.

• This is covered in detail in the Mechanics Modeling Course

OVERDETERMINED CONNECTORS

Copyright © 2022 Modelon

connector Frame

SI.Position[3] r_0;

Orientation R;

flow SI.Force[3] f;

flow SI.Torque[3] t;

end Frame;

record Orientation

Real T[3,3];

SI.AngularVelocity[3] w;

function equalityConstraint

input Orientation R1, R2;

output Real[3] residue;

…

end Orientation;

20

MODELICA

SIGNAL BUS - EXPANDABLE CONNECTOR

Copyright © 2022 Modelon 21

• Connector that will change its content depending on what’s connected to it.

• Used to define signal buses

EXPANDABLE CONNECTOR

22

Uses Modelica keyword expandable

Can be empty:

Or have predefined set signals:

Predefined signals guide the user!

EXPANDABLE CONNECTOR

23

• Causality is defined when connecting components:

CONNECTIONS

Connect a signal to the bus

Retrieve a signal from the bus

24

• Connecting angleSensor to the bus:

CONNECTIONS

25

• A bus connector can be composed of several sub-buses

• They don’t have to be of same type

HIERARCHICAL BUSES

26

• In this workshop you will:

• Create a model of a solar collector

• Create a connector and parameter interface

• Implement equations in the code editor

• Test the component

• Integrate the solar collector in a system model

WORKSHOP 3.2

Copyright © 2022 Modelon 27

	Default Section
	Slide 1: MODELICA Language advanced features
	Slide 2: overview

	Breaking encapsulation
	Slide 3: encapsulation
	Slide 4: Encapsulation
	Slide 5: Encapsulation
	Slide 6: Breaking encapsulation: Modifiers
	Slide 7: Breaking encapsulation: Modifiers
	Slide 8: Breaking encapsulation: Dot-notation
	Slide 9: Breaking encapsulation: Dot-notation
	Slide 10: Breaking encapsulation: Combinations
	Slide 11: Breaking encapsulation: inner/outer
	Slide 12: Breaking encapsulation: inner/outer
	Slide 13: Break encapsulation: Summary

	Stream connectors
	Slide 14: Stream connectors
	Slide 15: Streams
	Slide 16: Streams
	Slide 17: Streams

	Overdetermined connectors
	Slide 18: Overdetermined connectors
	Slide 19: Overdetermined connectors
	Slide 20: Overdetermined connectors
	Slide 21: Modelica Signal bus - Expandable Connector
	Slide 22: Expandable connector
	Slide 23: Expandable connector
	Slide 24: Connections
	Slide 25: Connections
	Slide 26: Hierarchical buses

	Workshop
	Slide 27: Workshop 3.2

