
INTRODUCTION TO
MODELICA

Reconfigurable models

• Creating reconfigurable models

• Templates and interfaces

• Conditional components

• Arrays of components

• Replaceable functions

OVERVIEW

Copyright © 2022 Modelon 2

CREATING RECONFIGURABLE MODELS

INTERFACES AND TEMPLATES

Copyright © 2022 Modelon 3

• Efficient model development requires that the models are designed so that the code can be
reused:

• Hierarchical structure allows models to be reused on different levels, components, subsystems
and systems.

• Inheritance allow properties that are common for several models to be defined only once.

• Combining the above two allows for creation of templates that brings code reuse to a new level.

• The interfaces and templates concept was introduced in the Vehicle Dynamics Library to
efficiently systematically handle complex models and the huge amount of variants.

INTERFACES AND TEMPLATES

Copyright © 2022 Modelon 4

• A template is a topology definition

• A template consist of

• interfaces that act as placeholders

• connections between the placeholders

• Using a template, configurations can be created by just specifying the components / subsystems

• Variant generation and maintenance is straight-forward

TEMPLATES

Copyright © 2022 Modelon 5

• An interface contains

• Connectors

• Common parameters

• Well-defined interfaces ensures plug-compatibility: all models that share an interface will also
fit in the template.

• Interfaces are used with inheritance, in Modelica the keyword ‘extends’.

• Engine has all the properties of the EngineInterface.

INTERFACES

Copyright © 2022 Modelon 6

• Now if we have interfaces for each subsystem, we can design a template with replaceable
components:

TEMPLATES

Copyright © 2022 Modelon 7

SYSTEM VARIANT

• If we have a template, with well defined interfaces, we can extend that and create a
specific system variant:

Replace component

Copyright © 2022 Modelon 8

The prefix replaceable in an element declaration allows for later modification of that element
using redeclare.

• Replaceable components

– applies to exactly 1 component (used for template design in Vehicle Dynamics Library as just
illustrated)

• Replaceable classes

– applies to many components at once, sub-model may be propagated (used e.g. for heat
transfer in Air Conditioning Library)

• Replaceable packages

– many functions and models can be replaced consistently at once (e.g. medium properties)

APPLICATIONS OF REPLACEABLE

Copyright © 2022 Modelon 9

REPLACEABLE COMPONENTS

Copyright © 2022 Modelon 10

model M1

replaceable GreenModel part1(p=2);

replaceable YellowModel part2;

replaceable GreenModel part3;

connect(…);

end M1;

model M2

extends M1(redeclare RedModel part1,

redeclare GreenModel part2);

model M “equivalent to M2”

RedModel part1(p=2);

GreenModel part2;

GreenModel part3;

connect(…);

end M;

part1 part2 part3

part1 part2 part3

part1 part2 part3

model M “equivalent to M2”

BlueModel part1(p=2);

YellowModel part2;

BlueModel part3;

connect(…);

end C;

model M1

replaceable model ColorModel=GreenModel;

ColorModel part1(p=2);

YellowModel part2;

ColorModel part3;

connect(…);

end M1;

model M2

extends M1 redeclare model

ColorModel=BlueModel);

REPLACEABLE CLASSES

Copyright © 2022 Modelon 11

part1 part2 part3

part1 part2 part3

part1 part2 part3

ColorModel

CREATING RECONFIGURABLE MODELS

CONDITIONAL DECLARATIONS

Copyright © 2022 Modelon 12

• When switching on and off a feature, or switching between a limited amount of models,
conditional components is an alternative.

• Typical example is visualization

• For real-time purposes, and other cases when simulation speed is prioritized, visualization
primitives can be removed with a parameter.

• This construction can also be used to switch between some predefined alternatives.

CONDITIONAL COMPONENTS

Copyright © 2022 Modelon 13

Connect statements to unused components are automatically removed

CONDITIONAL COMPONENTS

Copyright © 2022 Modelon 14

• Replaceable

– Unlimited/not predefined set of choices

• Conditional

– Choice is controlled with parameter that can be propagated

• There is overlap

– For a limited and predefined set of choices

– When both effects are wanted

replaceable Sine source if enable_source;

REPLACEABLE VS. CONDITIONAL

Copyright © 2022 Modelon 15

CREATING RECONFIGURABLE MODELS

ARRAYS OF COMPONENTS

Copyright © 2022 Modelon 16

To define an array:

Modelica.Electrical.Analog.Basic.Resistor R[10]

• Access an array element:
R[i]

• Access anything inside a particular array element
R[i].R (parameter R ”Resistance”)

• Setting parameter values to all array elements at once
Electrical.Analog.Basic.Resistor R[10](each R=100);

Electrical.Analog.Basic.Resistor R[10](R={1,2,3,4,5,6,7,8,9,10});

ARRAYS OF COMPONENTS

17

• See array size in component name

• Edit size in code layer

ARRAYS OF COMPONENTS

18

• Connecting arrays promts a special interface:

• [:] is used when you select all components

• You can choose individual connectors

• UI feeds back if size is wrong

ARRAYS OF COMPONENTS

19

• Arrays of components works just as arrays of real numbers

• Allows for e.g. discretization of PDE like problems as an electrical line with losses

• Example: Modelica.Electrical.Analog.Lines.ULine

Modelica.Electrical.Analog.Basic.Resistor R[10]

equation

for i in 1:9 loop

connect(R[i].p, R[i+1].n); // connecting the resistors

...

end for;

ARRAYS OF COMPONENTS

Copyright © 2022 Modelon 20

• Access an array element:
R[i]

• Access anything inside a particular array element

R[i].R (parameter R ”Resistance”)

• Setting parameter values to all array elements at once

Modelica.Electrical.Analog.Basic.Resistor R[10](each R=100);

ARRAYS OF COMPONENTS

Copyright © 2022 Modelon 21

• Principle architecture of Modelica.Electrical.Analog.Lines.ULine

ARRAYS OF COMPONENTS

22Copyright © 2022 Modelon

CREATING RECONFIGURABLE MODELS

REPLACEABLE FUNCTIONS

Copyright © 2022 Modelon 23

• Example:
Need to calculate the volume of an object

Case 1: a sphere
V = 4*pi*r3/3

Case 2: cylinder
V = pi*r2*L

Solution: Use replaceable functions!

• Let you reconfigure input data and calculation of data used in a model

REPLACEABLE FUNCTIONS

Copyright © 2022 Modelon 24

• Define a replaceable function:

• By setting a constraining class, we make sure that only functions returning a calculated volume
can be used.

• Using choicesAllMatching is good modelica practice but is handled automatically by Modelon
Impact.

REPLACEABLE FUNCTIONS

Copyright © 2022 Modelon 25

• Define the interface class and functions

REPLACEABLE FUNCTIONS

Copyright © 2022 Modelon 26

REPLACEABLE FUNCTIONS

Copyright © 2022 Modelon 27

In this workshop you will:

• Create a system architecture based on templates and interfaces

• Use component arrays to create a discretized model

WORKSHOP 4.1

Copyright © 2022 Modelon 28

	Slide 1: introduction to modelica
	Slide 2: Overview
	Slide 3: Creating reconfigurable models Interfaces and templates
	Slide 4: Interfaces and templates
	Slide 5: Templates
	Slide 6: Interfaces
	Slide 7: Templates
	Slide 8: System variant
	Slide 9: Applications of replaceable
	Slide 10: Replaceable components
	Slide 11: Replaceable classes
	Slide 12: Creating reconfigurable models Conditional declarations
	Slide 13: Conditional components
	Slide 14: Conditional components
	Slide 15: Replaceable vs. conditional
	Slide 16: Creating reconfigurable models Arrays of components
	Slide 17: Arrays of components
	Slide 18: Arrays of components
	Slide 19: Arrays of components
	Slide 20: Arrays of components
	Slide 21: Arrays of components
	Slide 22: Arrays of components
	Slide 23: Creating reconfigurable models Replaceable functions
	Slide 24: Replaceable functions
	Slide 25: Replaceable functions
	Slide 26: Replaceable functions
	Slide 27: Replaceable functions
	Slide 28: Workshop 4.1

