
INTRODUCTION TO 
MODELICA

Reconfigurable models



• Creating reconfigurable models

• Templates and interfaces

• Conditional components

• Arrays of components

• Replaceable functions

OVERVIEW
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CREATING RECONFIGURABLE MODELS

INTERFACES AND TEMPLATES
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• Efficient model development requires that the models are designed so that the code can be 
reused:

• Hierarchical structure allows models to be reused on different levels, components, subsystems 
and systems.

• Inheritance allow properties that are common for several models to be defined only once.

• Combining the above two allows for creation of templates that brings code reuse to a new level.

• The interfaces and templates concept was introduced in the Vehicle Dynamics Library to 
efficiently systematically handle complex models and the huge amount of variants.

INTERFACES AND TEMPLATES
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• A template is a topology definition

• A template consist of 

• interfaces that act as placeholders

• connections between the placeholders

• Using a template, configurations can be created by just specifying the components / subsystems

• Variant generation and maintenance is straight-forward

TEMPLATES
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• An interface contains

• Connectors

• Common parameters

• Well-defined interfaces ensures plug-compatibility: all models that share an interface will also 
fit in the template.

• Interfaces are used with inheritance, in Modelica the keyword ‘extends’.

• Engine has all the properties of the EngineInterface.

INTERFACES
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• Now if we have interfaces for each subsystem, we can design a template with replaceable 
components:

TEMPLATES
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SYSTEM VARIANT

• If we have a template, with well defined interfaces, we can extend that and create a 
specific system variant:

Replace component
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The prefix replaceable in an element declaration allows for later modification of that element 
using redeclare. 

• Replaceable components

– applies to exactly 1 component (used for template design in Vehicle Dynamics Library as just 
illustrated)

• Replaceable classes

– applies to many components at once, sub-model may be propagated (used e.g. for heat 
transfer in Air Conditioning Library)

• Replaceable packages

– many functions and models can be replaced consistently at once (e.g. medium properties)

APPLICATIONS OF REPLACEABLE 
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REPLACEABLE COMPONENTS
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model M1

replaceable GreenModel part1(p=2);

replaceable YellowModel part2;

replaceable GreenModel part3;

connect(…);

end M1;

model M2 

extends M1(redeclare RedModel part1,

redeclare GreenModel part2);

model M “equivalent to M2”

RedModel part1(p=2);

GreenModel part2;

GreenModel part3;

connect(…);

end M;

part1 part2 part3

part1 part2 part3

part1 part2 part3



model M “equivalent to M2”

BlueModel part1(p=2);

YellowModel part2;

BlueModel part3;

connect(…);

end C;

model M1

replaceable model ColorModel=GreenModel;

ColorModel part1(p=2);

YellowModel part2;

ColorModel part3;

connect(…);

end M1;

model M2 

extends M1 redeclare model 

ColorModel=BlueModel);

REPLACEABLE CLASSES
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part1 part2 part3

part1 part2 part3

part1 part2 part3

ColorModel



CREATING RECONFIGURABLE MODELS

CONDITIONAL DECLARATIONS
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• When switching on and off a feature, or switching between a limited amount of models, 
conditional components is an alternative.

• Typical example is visualization

• For real-time purposes, and other cases when simulation speed is prioritized, visualization 
primitives can be removed with a parameter.

• This construction can also be used to switch between some predefined alternatives.

CONDITIONAL COMPONENTS
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Connect statements to unused components are automatically removed

CONDITIONAL COMPONENTS
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• Replaceable

– Unlimited/not predefined set of choices

• Conditional

– Choice is controlled with parameter that can be propagated

• There is overlap

– For a limited and predefined set of choices

– When both effects are wanted

replaceable Sine source if enable_source;

REPLACEABLE VS. CONDITIONAL
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CREATING RECONFIGURABLE MODELS

ARRAYS OF COMPONENTS
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To define an array:

Modelica.Electrical.Analog.Basic.Resistor R[10]

• Access an array element:
R[i]

• Access anything inside a particular array element
R[i].R   (parameter R ”Resistance”)

• Setting parameter values to all array elements at once
Electrical.Analog.Basic.Resistor R[10](each R=100);

Electrical.Analog.Basic.Resistor R[10](R={1,2,3,4,5,6,7,8,9,10});

ARRAYS OF COMPONENTS
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• See array size in component name

• Edit size in code layer

ARRAYS OF COMPONENTS
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• Connecting arrays promts a special interface:

• [:] is used when you select all components

• You can choose individual connectors

• UI feeds back if size is wrong

ARRAYS OF COMPONENTS
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• Arrays of components works just as arrays of real numbers

• Allows for e.g. discretization of PDE like problems as an electrical line with losses

• Example: Modelica.Electrical.Analog.Lines.ULine

Modelica.Electrical.Analog.Basic.Resistor R[10]

equation

for i in 1:9 loop

connect(R[i].p, R[i+1].n); // connecting the resistors

...

end for;

ARRAYS OF COMPONENTS

Copyright © 2022 Modelon 20



• Access an array element:
R[i]

• Access anything inside a particular array element

R[i].R   (parameter R ”Resistance”)

• Setting parameter values to all array elements at once

Modelica.Electrical.Analog.Basic.Resistor R[10](each R=100);

ARRAYS OF COMPONENTS
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• Principle architecture of Modelica.Electrical.Analog.Lines.ULine

ARRAYS OF COMPONENTS
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CREATING RECONFIGURABLE MODELS

REPLACEABLE FUNCTIONS
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• Example:
Need to calculate the volume of an object

Case 1:  a sphere
V = 4*pi*r3/3

Case 2: cylinder
V = pi*r2*L

Solution: Use replaceable functions!

• Let you reconfigure input data and calculation of data used in a model

REPLACEABLE FUNCTIONS
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• Define a replaceable function:

• By setting a constraining class, we make sure that only functions returning a calculated volume 
can be used.

• Using choicesAllMatching is good modelica practice but is handled automatically by Modelon 
Impact.

REPLACEABLE FUNCTIONS
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• Define the interface class and functions

REPLACEABLE FUNCTIONS
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REPLACEABLE FUNCTIONS
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In this workshop you will:

• Create a system architecture based on templates and interfaces

• Use component arrays to create a discretized model

WORKSHOP 4.1
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