
INTRODUCTION TO
MODELICA

External Code

• External Functions

• External Objects

OVERVIEW

Copyright © 2022 Modelon 2

EXTERNAL CODE

EXTERNAL FUNCTIONS

Copyright © 2022 Modelon 3

• An external function is a function that uses non Modelica code that is defined in a external file,
e.g. a C-file.

• The Modelica external function call interface provides:
• Support for external functions written in C or FORTRAN
• Mapping of argument types from Modelica to the target language and back.

• External functions are used in the Modelica Standard Library
• Example: Modelica.Math.Matrices.LU

Very useful interface if you already have a large code base

EXTERNAL FUNCTIONS

Copyright © 2022 Modelon 4

• Example: Using a polynomial multiply function implemented in C
• Modelica wrapper to a C-file:

function polynomialMultiply

input Real a[:];

input Real b[:];

output Real c[:] = zeros(size(a,1)+size(b, 1) - 1);

external ”C” polmult(b, a, c, size(a,1), size(b,1));

end polynomialMultiply;

• Assumes following C-function:

void (polmult)(double const *,

double const *,double *, int, int);

EXAMPLE – EXTERNAL FUNCTIONS

Copyright © 2022 Modelon 5

• External functions are included as C functions compiled with the model code or binary library
which is linked to the model.

• Annotations are used to specify code includes or header and library names:

• annotation(Include="#include <add2.c>");

• Code can be located in current directory, relative location or in $DYMOLA\Source.

• annotation(Include="#include <add2.h>", Library="ext");

• Library prefix is added by the linker – depends on the used compiler.

EXTERNAL CODE

Copyright © 2022 Modelon 6

• Annotation appended External ”C” definition

EXTERNAL C-CODE

Copyright © 2022 Modelon 7

• Numerical solvers are more robust and faster, when symbolic derivatives are available.

• For external code, if gradients can be computed, Modelica derivative annotations for the
wrapper functions can be supplied to point to the external gradient functions.

• Our experience shows that it is worth the additional effort, high-quality implementations of
linking to external code should have derivatives.

• If external functions do not behave like pure mathematical functions, i.e. a set of inputs always
generates the same outputs (no state, no memory), the solver will hang or give unpredictable
results.

EFFICIENT CODE

Copyright © 2022 Modelon 8

EXTERNAL CODE

EXTERNAL OBJECTS

Copyright © 2022 Modelon 9

• External Functions may not have memory or internal states

• Often more efficient if external code has internal state (e.g. large table interpolations), even
though function acts as if it had no internal states (side effects)

• Many couplings to external code require state/memory in external code (e.g. real controller
code)

• Simple forms of co-simulation possible

EXTERNAL OBJECTS

Copyright © 2022 Modelon 10

• There is a predefined partial class "ExternalObject”

• An external object class must be extended from "ExternalObject“ and contain two function
definitions, called "constructor" and "destructor", and shall not contain other elements.

• Modelon Impact automatically handles the construction and deconstruction of the objects,
although the user needs to define the functions accordingly:

• The constructor shall have one output argument in which the constructed ExternalObject is
returned.

• The destructor shall have only one input argument, ExternalObject.

• It is not legal to call explicitly the constructor and destructor functions.

EXTERNAL OBJECTS

Copyright © 2022 Modelon 11

DEFINING AN EXTERNAL OBJECT

Copyright © 2022 Modelon

class MyExternalObject

extends ExternalObject;

end MyExternalObject;

function constructor

…

function destructor

…

function Method1

…

function Method2

…

function Method3

…

class MyModel

MyExternalObject object;

Real a;

Real b;

...

equation

a = Method1(object)

b = Method2(object,a)

Definition of object

Use of object

12

DEFINING AN EXTERNAL OBJECT

Copyright © 2022 Modelon

class MyExternalObject

extends ExternalObject;

end MyExternalObject;

function constructor

output MyExternalObject obj;

external "C" obj = MyObject_init();

function Method1

output Real a;

external "C" a = MyObject_Method1();

function Method2

output Real b;

external "C" b = MyObject_Method2();

MyExternalCode.c

void MyObject_init()

...

void MyObject_Method1();

...

void MyObject_Method2();

...
function destructor

…

13

In this workshop you will:

• Implement a small C function

• Create a modelica wrapper function

• Execute a model using the external c-code

WORKSHOP 4.4

Copyright © 2022 Modelon 14

	Slide 1: introduction to modelica
	Slide 2: Overview
	Slide 3: External code external functions
	Slide 4: External Functions
	Slide 5: Example – External FunctionS
	Slide 6: External code
	Slide 7: External c-code
	Slide 8: Efficient Code
	Slide 9: External code external objects
	Slide 10: External Objects
	Slide 11: External Objects
	Slide 12: Defining an External Object
	Slide 13: Defining an External Object
	Slide 14: Workshop 4.4

