WORKSHOP 1.3

Component design

Contents

Introduction	1
Loading TrainingPack	1
Designing a component interface	2
Test Rig	4
Create an icon and add documentation	5

Introduction

In this workshop, we will learn how to interface a component or subsystem. By adding connector and parameter interfaces to a component we will be able to use it in other models. We will create a test rig, to verify the components behavior. And optionally add an icon and some documentation.

Loading TrainingPack

In this workshop, we will utilize a training package prepared in advance. It is called **TrainingPack.zip** and should have been provided to you by your course leader. Follow the instructions below to upload it.

• Start the import by clicking the upload button in the *Library Browser*:

✓ Project ■	± ± +
 MyFirstPackage 	Import a Modelica model (.mo), an FMU
FAVORITES	(.fmu) or compressed package (.zip) from
LIBRARIES	file

Figure 1 Import modelica package

• Select the supplied **TrainingPack.zip** file.

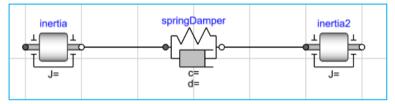
Name	^	Date modified	Туре	Size
📳 Training	Pack.zip	9/15/2020 1:10 PM	Compressed (zipp	8 KB
File name:	TrainingPack.zip		~ Custom Fi	les (*.mo;*.mol;*.zip)
			Open	Cancel

Figure 2 Load TrainingPack

• The package should now be ready to use.



Figure 3 TrainingPack successfully loaded


Designing a component interface

To properly reuse subsystem components, you must consider the following:

- Parameter interface, choosing what data to expose and how to present it.
- Connector Interface, how the component can interact with other components.

In the following part of the workshop, you will reuse the simple double inertia model created in workshop 1 and create an elastic shaft. You will propagate the necessary parameters and create a connector interface.

- 1. Create a new sub-package called Components in TrainingPack.W3.ComponentDesign
- 2. Create a new sub-package called Experiments in TrainingPack.W3.ComponentDesign
- 3. Create a new model called **ElasticShaft** in **TrainingPack.W3.ComponentDesign.Components**
- 4. Go back to **MyFirstModel** created in Workshop 1, select all components, and copy them into the **ElasticShaft** class.

Figure 4 Connected components

5. Now we will create the connector interface. Drag Modelica.Mechanics.Rotational.Interfaces.Flange_a and (twice!) into the model. Name them as flange a and flange b, then connect them to the inertias, as shown in Figure 5 below.

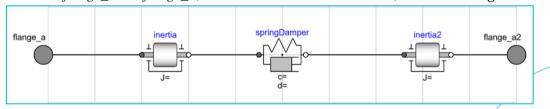


Figure 5 Connected components with flange

6. For clarity, rename **inertia** to **inertia1**.

Note: If not done already, reset the start attribute of *inertia1.phi* to 0 radians, otherwise the shaft will initialize in a skewed state.

7. We need to decide what data needs to be exposed when using the component. In this case, we will expose *J1*, *J2*, *c* and *d*. This is done in two steps:

- a. Create a new parameter in the component.
- b. Propagate the new parameter down into the instance as a modifier.
- 8. Open the **Properties** tab of the *Details Panel*. On the top right, there is a 🖃 button.

	ElasticShaft iningPack.W2.ComponentDesign.Components.El	asticShaft
INFORMATI	ON	>
PROPERTIE	S	+ ¥

Figure 6 Finding Add Variable icon

9. Click the button to open the create new parameter dialog. Create the four parameters needed:

ADD VARIABLE		
Variability	Туре	
Parameter	✓ MomentOfInertia (kg·m²)	
Name	Expression	
J1		
Description		
J of inertia1		
Tab	Group	
	CANCEL	

Figure 7 Creating new parameter for J1

Types for the coefficients are:

Coefficient	Туре	Expression	Description	Group
J1	MomentOfInertia	0.6 [kg m ²]	Moment of inertia	Inertia
J2	MomentOfInertia	0.4 [kg m ²]	Moment of inertia	Inertia
с	RotationalSpringConstant	1000 [N m/rad]	Rotational spring constant	Spring Damper
d	RotationalDampingConstant	10 [N m s/rad]	Rotational damping constant	Spring Damper

10. Now all we need to do is to place the modifiers on the components. Click on *intertia1*, and go to the parameter *J*.

- 11. The idea is to modify J with the new parameter JI that we created. If you click the parameter value box, you can autocomplete the content of the instance tree; start typing J and choose JI from the list.
- 12. Similarly, select J2 for inertia2.J, c for springDamper.c and d for springDamper.d.

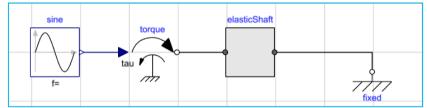

■ 1D-ro	tia1 tational component with ine lica.Mechanics.Rotational.Co	
INFORMATION		>
PROPERTIES		~
General Advan	ced	T
	Darameters	
	Parameters	la al
J	Parameters	kg·m²
J	: []	kg-m² Oeg
	i j Init J1	

Figure 8 Modifying J with the new parameter

Test Rig

Next step is to test the behavior of the component. You will create a test rig, mount the component, and simulate it.

- 13. Create a test experiment for the elastic shaft component.
 - a. Create a new model TestShaft in TrainingPack.W3.ComponentDesign.Experiments.
 - b. Drag in the **ElasticShaft** component.
 - c. Drag the following:
 - 1. Modelica.Mechanics.Rotational.Components.Fixed
 - 2. Modelica.Mechanics.Rotational.Sources.Torque
 - 3. Modelica.Blocks.Sources.Sine
 - d. Connect them according to the schema below in Figure 9:

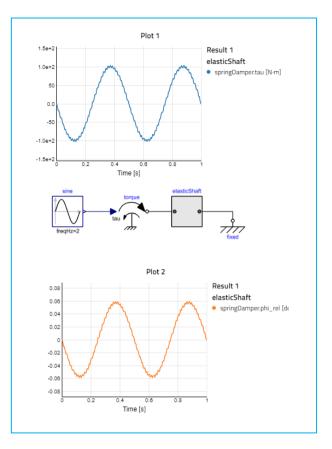


Figure 9 ElasticShaft with its components

e. Parametrize the model according to the data given below:

	-
Parameter:	Value:
sine.amplitude	100
sine.freqHz	2 [Hz]
elasticShaft.J1	0.6 [kg m ²]
elasticShaft.J2	0.4 [kg m ²]
elasticShaft.c	100000 [N m/rad]
elasticShaft.d	0 [N m s/rad]

- f. Simulate the model for 1 second. Plot graphs for:
 - *springDamper.tau*[N_m]
 - *springDamper.phi_rel*[deg]

Create an icon and add documentation

Use the icon editor to create a nice icon for the elasticShaft.

Use the documentation editor to add information about the component.

This can be done by right-clicking on the **ElasticShaft** class and selecting *Edit Icon* and *Show documentation*, respectively. See figure below.

TestShaft	
W4	Rename
Day2	Delete
	Duplicate
Day3	Duplicate to
Day4	Extend
Resources	Export FMU
	Edit Icon
VORITES	Export class
	Show documentation
BRARIES	Copy path
	Add to favorites
• 277 Modelica 4.0.0	Open in new tab

This concludes workshop 1.3. Well done!