
WORKSHOP 2.1
Hierarchical modeling in Impact

Copyright © 2022 Modelon

Contents
Introduction ... 1

Exploring the model package .. 1

Redesigned powertrain template ... 2

Compliant powertrain ... 4

Electric powertrain .. 7

Introduction
In this workshop, you will learn about the concepts of templates and interfaces.

You will:

• Reconfigure an existing system using a new architecture.

• Reuse the ElasticShaft (from Workshop 1.3) to configure a compliant powertrain.

• Create a new template for an electric powertrain.

• Create tests and run analysis on the systems.

Exploring the model package
A model package for workshop 3 has been provided to you.

1. Open the package TrainingPack.Day2.W1 (from here on referred to as W1) and inspect the

library content. It will have a structure like that shown in the figure below.

Copyright © 2022 Modelon

2. Go to W1.Experiments.AccelerationTest1 and run the simulation. This experiment runs the

car at full throttle. Set the simulation Stop Time=10s and plot the car speed (car.speed).

Redesigned powertrain template
Now let us inspect a new powertrain model architecture. The idea is to have an easy way to change the

whole powertrain in one go and be flexible enough to accommodate several different types. A

conventional powertrain contains a completely different set of subsystems than an electric or hybrid

system.

1. Open the W1.Systems package and compare models OrigianlCarConfig and

OriginalCarConfigPowertrain. These system variants are based on different templates found

in the Templates package.

Copyright © 2022 Modelon

2. Go to the model W1.Systems.OriginalCarConfigPowertrain and inspect the component

browser.

3. Double click the powertrain instance, to go down one hierarchical layer in the instance tree.

Here you can inspect and see that this model contains the same subsystems as the

OrigianlCarConfig example. The new architecture is only a refactoring of the same

interfaces used earlier. Now let us test the new architecture.

4. Open the W1.Experiments package, duplicate the model AccelerationTest1 and rename it to

AccelerationTest2.

Copyright © 2022 Modelon

5. Change the car component to use the new architecture.

6. Simulate the model and plot the car speed and verify that you get the same results.

Compliant powertrain
In this part of the workshop, we will use the elastic shaft component developed in Workshop 2 and

create a powertrain model with compliance.

1. Open W1.Systems.SubSystems.Powertrain and look at the ElasticDriveline model. This is

the same model as created before, but it also uses an interface class for driveline components.

2. To create a new variant, we have two optional methods to consider: either we extend the

W1.Systems.SubSystems.Powertrain template class and populate the template, or we

duplicate an existing variant and change the driveline component.

3. Since the TraditionalPowertrain has almost everything we need, lets duplicate that one.

Right click, and Duplicate. Rename it to TraditionalCompliantPowertrain.

4. Open the code editor and change the model description to “Compliant powertrain.” Save the

changes.

Copyright © 2022 Modelon

5. Go to the parameter dialog and change the driveline component to use the ElasticDriveline.

6. Now that we have a compliant driveline, lets create a vehicle that uses it. Duplicate

W1.Systems.OriginalCarConfigPowertrain and call it

OriginalCarConfigCompliantPowertrain.

7. Configure it to use the CompliantPowertrain by redeclaring the powertrain subsystem. You

can verify that its correctly configured, by browsing down the component browser. If it is

correct, you will see the elastic shaft.

Let us take it for a spin! Now we are going to create an experiment that tests the influence of the

compliance. We will give a series of acceleration inputs and study the vibrations in the shaft.

8. Go to the Experiments package and Duplicate one of the previous tests, and name it

AccelerationTest3.

Copyright © 2022 Modelon

9. Change the car component to use the compliant variant.

10. To generate the desired input signal, instead of the constant input, we will use the

Modelica.Blocks.Sources.TimeTable. You can copy paste the following table:

{{0,0},{1,1},{2,1},{3,0}}

Then you should get the following:

11. The model is already initialized at v=25m/s. This input will test going from 25m/s cruise,

ramping up to full throttle then releasing the gas again. Simulate the model for 4s and plot

car.speed and powertrain.driveline.springDamper.phi_rel. You can zoom in and look at the

vibrations.

Copyright © 2022 Modelon

Electric powertrain
In the following part of the workshop, you will create a very simple electric powertrain with a single

electric machine and a battery pack. To test the vehicle, you will create two experiments, one

AccelerationTest, and one DriveCycle to analyze the range and battery performance.

You will create the following:

• Template for ElectricDriveline

• A data record for the battery

• A variant of the Electric Driveline

• Electric car variant

• DriveCycle experiment

To create the template, we start with the right template interface classes.

1. Extend the interface class W1.Interfaces.Powertrain and save it in the Templates package.

Name it ElectricPowertrain.

Copyright © 2022 Modelon

2. Add the following interface components for the electrical machine and the battery:

• Modelon.Electrical.EnergyStorage.Interfaces.Base

• Modelon.Electrical.Machines.Interfaces.BaseDC

3. Connect them like this:

Now we will create the ElectricPowertrain variant, but to parametrize the battery we need a data

record, so we will create that first.

4. Extend the data record class

Modelon.Electrical.EnergyStorage.Components.CellInfo.BatteryCellInfo, call it

MyBattery and place it in the battery data folder

W1.Systems.SubSystems.Powertrain.BatteryData. (See below)

Copyright © 2022 Modelon

5. Add the following data to the record.

Now that we have the data ready, lets create the ElectricPowertrain variant.

6. Start by extending the new ElectricPowertrain template and place it in the package

W1.Systems.SubSystems.Powertrain. Name the subsystem ElectricPowertrain.

Copyright © 2022 Modelon

7. To complete the variant, we need to do the following steps:

• Choose an ElectricMachine and parametrize it.

• Choose a Battery and parameterize it.

• Limit and amplify the throttle input.

The model assumes that the throttle input is between 0 and 1. To assert that the user does not

make an error, we place a limit to the input. Likewise, the Electrical machine assumes torque

input, which will be between 0 and max torque output of the machine. The result after the

upcoming steps should look like this:

a. Start with the electrical machine. Redeclare it and choose the IdealDC version and

give it the following parameters:

Copyright © 2022 Modelon

b. Redeclare the battery and choose “Battery with SOC output”. Set ns = 96 and np =

2 and change the cellInfo data input to MyBattery.

Copyright © 2022 Modelon

c. To add the limiter and gain, we can reuse the implementation used in the standard

engine model. Go to the W1.Systems.SubSystems.Powertrain.BasicEngine and

copy the two components, and paste them into the ElectricPowertrain, and connect

them.

d. We need to change the parameter for the gain. The maximal torque the machine can

give, is stored in the parameter tau_rated in the machine model. To set the gain, use

component referencing. When you start to type, you can use autocompletion to

browse the model hierarchy and find the parameter.

Copyright © 2022 Modelon

Now we have completed the creation of a new ElectricPowertrain. Let us create the electric vehicle.

8. Duplicate W1.Systems.OriginalCarConfigPowertrain and call it ElectricCar. Redeclare

the Powertrain subsystem to use the ElectricPowertrain.

Let us take it for a spin!

9. Duplicate the AccelerationTest2, call it AccelerationTest4 and replace the car with the electric

car.

10. Run the simulation for 10s and plot car.speed and powertrain.base.SOC.

As we can see, the SOC is decreasing quite rapidly, so the current battery and electrical machine sizing

is not well suited and needs to be redesigned.

Instead of giving direct throttle input, drive cycles can be described by speed profiles.

Copyright © 2022 Modelon

11. In the W1.Experiments.Template package, you can find a very simple DriveCycleTest.

12. Extend the template and insert the ElectricCar.

The controller represents the driver, given the instructions to follow a specified velocity profile given

by the timetable input.

13. Run the simulation for 120s and plot the timetable output, the car speed, the battery SOC, and

the ElectricPowertrain torque output.

Copyright © 2022 Modelon

At t=100s, the driver is given the instruction to decelerate to 20m/s, but in the current model there is

no possibility to brake. That would require additional modeling effort.

This concludes workshop 2.1. Well done!

