
WORKSHOP 3.1

Writing Modelica code – “Hello World”

Copyright © 2022 Modelon

Contents
Introduction .. 1

A cake model ... 1

What is the mathematics involved? .. 1

Modeling .. 2

Aiming at a better style .. 4

Adding cake color .. 5

Making the cake look like its result .. 5

Finalizing the cake model ... 6

A bonus? .. 6

Introduction
In this workshop, you will write your first contained model from scratch in an incremental approach.

“Contained” refers to the fact that the model does not have any interface and thus can be ran alone.

This enables focusing on the basics – such as time variability, types, equations, etc. – and the

organization of the parameters in the Modelon Impact GUI.

Note: At any time, if you need the perfect Modelica syntax, you can open the help center of Modelon

Impact, search for “Modelica Specification” and click on the corresponding link.

A cake model
Yes, you read it well… In this workshop, you will develop a cake model! To be honest, this model

will not be culinary correct, but it should be a fun example to get your hands in Modelica language

and hopefully learn many nice customization capabilities.

What is the mathematics involved?

As said above, there is no culinary correctness in this model. However, we want to observe a given

behavior for which we will make equations for. Our criteria are the height and color of the cake.

Let’s assume the following list of ingredient and associated effects:

Recipe parameters Effect on cake height Effect on cake color

Number of eggs Linearly increasing None

Mass of flour Small influence (10%)

Parabola (increase/decrease)

None

Mass of sugar None None

Baking time High influence

Parabola (increase/decrease)

Incrementally dependent on

both variables

2
Copyright © 2022 Modelon

Oven temperature Linearly decreasing

Each of these parameters are bounded between minimum and maximum values. This way, we avoid

diverging behavior such as adding more and more effects to increase the cake height.

Here is a suggestion of such a model:

- Create variables which are saturation and normalization of each of these parameters

- Add a formula for the cake height ℎ that adds to the minimum height of the cake ℎ𝑚𝑖𝑛, a

fraction 𝑓 of the delta to the maximum height ℎ𝑚𝑎𝑥:

ℎ = ℎ𝑚𝑖𝑛 + (ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛) ∗ 𝑓

This fraction is defined as the product of the effect of the parameters as height:

𝑓 = (1 − 𝑇_ℎ𝑜𝑣𝑒𝑛_𝑠𝑎𝑡) ∗ 𝑛𝐸𝑔𝑔𝑠_𝑠𝑎𝑡 ∗ (4 ∗ 𝑡_𝑏𝑎𝑘𝑖𝑛𝑔_𝑠𝑎𝑡 ∗ (1 − 𝑡_𝑏𝑎𝑘𝑖𝑛𝑔_𝑠𝑎𝑡)) ∗ (0.9 + (4

∗ 𝑚𝐹𝑙𝑜𝑢𝑟_𝑠𝑎𝑡 ∗ (1 − 𝑚𝐹𝑙𝑜𝑢𝑟_𝑠𝑎𝑡))/10)

where the subscript “sat” refers to the saturated and normalized variables of each ingredient.

The color of the cake is defined as follow:

Color RGB Qualifier Condition

 {240,195,0} Raw 𝑟 < 0.75

 {167,103,38} Fondant 0.75 ≤ 𝑟 < 0.90

 {136,66,29} Perfect 0.90 ≤ 𝑟 < 1.05

 {91,60,17} Dry 1.05 ≤ 𝑟 < 1.20

 {0,0,0} Burned 1.20 ≤ 𝑟

Where 𝑟 is the ratio:

𝑟 =
𝑡𝑏𝑎𝑘𝑖𝑛𝑔 ∗ 𝑇𝑜𝑣𝑒𝑛

𝑡𝑖𝑑𝑒𝑎𝑙 ∗ 𝑇𝑖𝑑𝑒𝑎𝑙

The “ideal” subscript corresponds to the secret recipe.

Modeling

1. Create a new package W1 and create a new model class in that package, called Cake

2. Open this new Cake model and start adding all ingredients as variables. This can be done in two

ways:

1. Graphically by:

a. clicking on the “+” symbol in the “PROPERTIES”.

3
Copyright © 2022 Modelon

b. A dialog opens to assist the creation of the parameter.

c. For each variable, select the time variability (“parameter” is what we need), the type

(select “Real” or Integer for now), add a name, description and you can experiment with

Expression (default variable) and “tab” and “group” annotations.

2. Coding in Modelica language in the source code editor:

a. Change view by switching from “Diagram” to “Code” in the toolbar.

b. The code editor opens, and you are ready to type the Modelica code yourself.

Note: You can combine both solutions so if you do not remember the syntax, add a variable

graphically and look at what has been added in the code editor.

3. At this step, you should have a parameter defined for each ingredient. Except from the number of

eggs – that is a Integer – , all other parameters are Real.

4. Add a variable for the cake height. We will let aside the color for now.

5. Add the normalized and saturated variable variant for each of the ingredients using the min() and

max() operators. It should look something like: 𝑣𝑎𝑟𝑆𝑎𝑡𝑁𝑜𝑟𝑚 =

 (𝑚𝑖𝑛(𝑚𝑎𝑥(𝑣𝑎𝑟, 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒), 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒) − 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒)/(𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒);. Note that

minValue and maxValue can be substituted by their value for now.

4
Copyright © 2022 Modelon

6. Add the equation for the cake height. One option is:

ℎ𝑒𝑖𝑔ℎ𝑡 = ℎ𝑀𝑖𝑛 + (ℎ𝑀𝑎𝑥 − ℎ𝑀𝑖𝑛) ∗ (1 − 𝑇_ℎ𝑜𝑣𝑒𝑛_𝑠𝑎𝑡) ∗ 𝑛𝐸𝑔𝑔𝑠_𝑠𝑎𝑡 ∗ (4 ∗ 𝑡_𝑏𝑎𝑘𝑖𝑛𝑔_𝑠𝑎𝑡

∗ (1 − 𝑡_𝑏𝑎𝑘𝑖𝑛𝑔_𝑠𝑎𝑡)) ∗ (0.9 + (4 ∗ 𝑚𝐹𝑙𝑜𝑢𝑟_𝑠𝑎𝑡 ∗ (1 − 𝑚𝐹𝑙𝑜𝑢𝑟_𝑠𝑎𝑡))/10);

You should be able to simulate this model. If it does simulate then congratulations, you have created

your first model from scratch! If not, look at your code or reach for help, you should not be too far

from the goal. Search for variables that are not defined, or parameter values not assigned.

Aiming at a better style

Using Real type is convenient but is not really specific. SIunits define the quantities and units involved

in the type to properly define the variable. Also, as for Real, these units have min and max attributes.

It is a good time to add dedicated parameters to these attributes so we can easily modify them to

change the boundary conditions of our recipe.

1. Substitue each Real keyword in the Modelica code by the corresponding type. It should be enough

to deal with Modelica.SIunits.Mass, Modelica.SIunits.Temperature, Modelica.SIunits.Time and

Modelica.SIunits.Height.

2. For each (at least for some) ingredients, add min and max attributes to the associated parameters

as new parameters. This can look like:

3. Optionally, you can set the ingredient in a group called “Ingredients” and the min and max

parameters in a tab called “Problem statement”.

4. For some units, it is convenient to add the attribute “displayUnit” to a given unit – e.g. “degC” for

degree Celsius or “min” for minutes or “cm” for centimeter. Here is an example:

When writing code, it is inconvenient to duplicate code. Each expression that can be reused ends up

being a function or a model. A good candidate for that is the normalization and saturation of the

variables.

5. Let’s define a function inside the model that does exactly what we expect:

6. Now, for each saturated and normalized variables, you can define it by using the new function.

5
Copyright © 2022 Modelon

This should look like a decent code already. Congratulations!

Adding cake color

Modelica language enables you to create your own types. While many are available in the Modelica

Standard Libraries, it would be impossible to gather them all – for all application. Let’s see how we

can create one easily.

A color is often defined as a combination of Red Green Blue (RGB). The value of each primitive is

given a value between 0 and 255 (which makes 28 options). 0 corresponds to an absence of the color

while 255 correponds to a full presence of it. Therefore, RGB={255,0,0} corresponds to red,

{0,255,0} to green, {0,0,255} to blue, {255,255,255} to white (all primitives superimposed) and

{0,0,0} to black (absence of all primitives). Let’s create a new type for the RGB coloring.

1. Create a new type with the “type” keyword. For RGB, this new type will correspond to an array

of integers of size 3.

2. We know the bounds of the integer values so let’s add them. As the bounds apply to each of the

scalar of the array, the keyword “each” should be used.

3. Now we can conveniently use the new RGB type as any other (like Real). Create colors following

the table describing the colors using the qualifiers as name. A first is shown as hint:

4. You can now add a variable and associated equation to define the cake color. Of which type

should the cakeColor variable be? Use if-conditions to match the cake color based on the

conditions expressed in the table describing the colors above.

Making the cake look like its result

Why did we spend so much time adding colors if we cannot see the result of the cake? Of course we

can… it just requires some coding.

1. Right click on the cake model in the Workspace and edit the icon.

2. Use the shapes to draw something that looks like a cake. You can spend much time on it so that it

would look very nice. A less artistic icon could look like that:

3. Save and close the icon editor.

4. Open the source code editor.

5. Expand the last annotation (at the very bottom of the model) and observe the corresponding code

of the icon. You should be able to identify the shapes. The icon above is composed of a Polygon

(rectangle with pseudo-rounded bottom – indeed, these as small consecutive lines) and an Ellipse.

You should also be able to identify “fillColor” and “lineColor” attributes

Note: Modelica has a specific operator called DynamicSelect that enables changing the values of

these attributes with the simulation time. It is constructed as follow: DynamicSelect(default,

variable) or simply DynamicSelect(variable) if the variable has a default. The icon will display

the default until the simulation is ran, then it will display the variable.

6. Change the fillColor of your cake to be “raw” by default” and “cakeColor” during simulation.

6
Copyright © 2022 Modelon

Bonus: Change the height of your cake to be a function of the height variable. This one is a bit

more cumbersome as you must scale the height to match the coordinates of the canvas. It is

perfectly feasible though. Taking the challenge?

Finalizing the cake model

A model is never complete without a proper documentation and testing.

1. Right click on the cake model in the Workspace and show documentation.

2. Open edit mode by clicking on the pencil on the top right of the documentation window:

3. The pencil turns orange. Write a small documentation. Try also writing some formatted text

(bold, italics) in Word and copy paste it in the documentation, the formatting is preserved.

4. Click on the floppy disc icon to save your changes and on the pencil to quit the editing mode.

5. Create a new model and name it “BakingCakes”.

6. Instantiate several cake models in it and play around with the parameters, observe your different

cakes.

A bonus?

If you were fast in developing the model, you can continue playing with the Modelica language.

Wouldn’t that be great to have a gourmet review of your cake? Something simple, printed on the

simulation log? Interested?

Modelica.Utilities.Streams.print() function enables printing messages in the log.

The function getInstanceName() returns a String with the name of the instance of the class in which it

belongs.

Try adding in the equation section, the call of the print function that prints a message including the

name of the cake instance and a message that is function of the color of the cake.

Congratulations in making such a great cake!

