WORKSHOP 4.1.1

Creating a system architecture based on templates and interfaces

Contents

Introduction	1
Creating the packages	1
Creating the interfaces	1
Creating the template	2
Creating the subsystems	2
Creating a configuration	6
Extra work	7

Introduction

In this workshop, a configurable vehicle architecture will be built.

Creating the packages

- 1. Create a new package **W1_Reconfigurable** inside the course package you created in one of the previous lectures.
- 2. Inside this package, create Interfaces and Templates sub-packages.

Creating the interfaces

- 1. In *W1_Reconfigurable.Interfaces*, create a partial model called **Engine** (create a model first, then open the code layer, and add the keyword partial).
 - a. Drag in a *Modelica.Blocks.Interfaces.RealInput*, position it to the left, and call it **throttle.**
 - b. Drag in a *Modelica.Mechanics.Rotational.Interfaces.Flange_a*, position it to the right and call it **transmissionFlange**.
- 2. Repeat this for *Transmission*, *Driveline*, and *Chassis* (make sure all are partial):
 - a. Create a model **Transmission** and add two flanges, called **engineFlange1** and **drivelineFlange**, to the left and right, respectively.
 - b. Create a **Driveline** model with **flange_a**, and **flange_b**.
 - c. Create a Chassis model with drivelineFlange and an output connector named speed. Add: parameter Modelica.SIunits.Velocity v_start "Chassis initial speed";

Now, you should have a library looking like the Figure 1.

Figure 1 Package Structure

Creating the template

1. In *W1_Reconfigurable.Templates*, create a partial model called **StandardCar**. (Create a model first, then open the code layer, and add the keyword partial):

partial model StandardCar

- 2. Drag an *Interfaces.Engine* component into the model, and repeat for the other subsystems and make sure to call them **engine**, **transmission**, **driveline**, and **chassis**. Make sure that the naming of your subsystems is right, these names are not so easy to change later, and align them in that order (see Figure 2).
- 3. Connect them. Now you should have a model looking like the Figure 2.

Figure 2 StandardCar Template

Creating the subsystems

- 4. In W1_Reconfigurable, create a sub-package called SubSystems
- 5. Right-click on *Interfaces.Engine* and select **Extend**.

Figure 3 Extending an interface

6. Create a *BasicEngine* model in the *SubSystems* package, see Figure 4.

	EXTEND MODEL
	Engine
Name	
BasicEn	gine
Class spec	ialization
model	-
Package	
Training	Pack.Day4.W1_Reconfigurable.SubSys' ~
🗌 Includ	le results
$\left(\right)$	CANCEL

Figure 4 Creating new basic engine

7. Build the model using *Modelica.Blocks.Nonlinear.Limiter*, *Modelica.Blocks.Math.Gain*, and *Modelica.Mechanics.Rotational.Sources.Torque*. Set *uMax*=1, *uMin*=0 in the limiter block and propagate the gain as max_torque with a default of 300 Nm. The model should look like Figure 5. Use the code block reference shown below.


```
model BasicEngine "Engine with ideal throttle characteristics"
    extends .TrainingPack.Day4.W1_Reconfigurable.Interfaces.Engine;
    .Modelica.Blocks.Math.Gain gain(k = max_torque) annotation(...);
    .Modelica.Mechanics.Rotational.Sources.Torque torque annotation(...);
    parameter .Modelica.Units.SI.Torque max_torque = 300 "Torque for full throttle";
    .Modelica.Blocks.Nonlinear.Limiter limiter(uMax = 1,uMin = 0) annotation(...);
```

- 8. Create models for the other sub-systems:
 - a. **FixedTransmission** with a *Modelica.Mechanics.Rotational.Components.IdealGear* and propagated parameter *ratio*=1.0 as shown in Figure 6.

Figure 6 FixedTransmission model

b. **RigidDriveline** with an *Inertia* and *inertia* parameter *J*=0.1 propagated as shown in Figure 7.

Figure 7 RigidDriveline model

c. **IdealChassis** using components from *Rotational* and *Translational* libraries as shown in Figure 8.

Figure 8 IdealChassis model

d. Propagate parameters and set default values for *J_wheel=1*, *R_wheel=0.3*, *m_chassis=1400* and *v_start* (note especially *v_start* default value was set in the template, see the Figure 9).

COMPONENTS ↓ ^A ∨ ← IdealChassis ↓ · · · Chassis	MASS 	nents.Mass
♥ wheelInertia	INFORMATION	>
•• mass		T
speedSensor	General Advanced Variables	
 drivelineFlange speed 	m i m_chassis L i 0	kg m
COMPONENTS J _Z V	macc	
← IdealChassis ←	Sliding mass with inertia Modelica.Mechanics.Translational.Compo	nents.Mass
⊕ wheelInertia IN	IFORMATION	>
t [®] t wheel Pl	ROPERTIES	\sim
· • • mass · • speedSensor G	eneral Advanced Variables	T
GrivelineFlange	v : start v_start m/s stateSelect v	m/s
	s i	m

Figure 9 Propagating Chassis parameter

e. Now, the code for chassis should look like Figure 10.

<pre>model IdealChassis "Ideal chassis with no losses" extends Interfaces.Chassis; .Modelica.Mechanics.Rotational.Components.Inertia wheelInertia(J = J_wheel) annotation(); .Modelica.Mechanics.Rotational.Components.IdealRollingwheel wheel(radius = R_wheel) annotation .Modelica.Mechanics.Translational.Components.Mass mass(m = m_chassis,v(fixed = true,start = v_ .Modelica.Mechanics.Translational.Sensors.SpeedSensor speedSensor annotation(); parameter .Modelica.Units.SI.Inertia J_wheel = 1 "Wheel inertia"; parameter .Modelica.Units.SI.Distance R_wheel = 0.3 "Wheel radius"; </pre>	n(••••); _start))	annotatio	n();	
parameter .Modelica.Units.SI.Mass m_chassis = 1400 "mass of the chassis";			7	
equation				
connect(wheel.flangek,wheelInertia.flange_b) annotation();				
connect(wheelinertia.Tiange_a,drivelineriange) annotation();				
connect(wheel.tlangel,mass.tlange_a) annotation();				
connect(mass.flange_b,speedsensor.flange) annotation();			1	
connect(speedsensor.v,speed) annotation();				
annotation(••••);				/
end IdealChassis;				/
	/	/	/	/

Figure 10 IdealChassis code layer

f. Create nice icons for your subsystems.

Creating a configuration

- 1. In W1_Reconfigurable, create a sub-package called Configurations
- 2. Extend the *Templates.StandardCar* and create AccelerationTest in the package Configurations.
- 3. Open the Properties section, and use the dropdown menu on the engine-model and select BasicEngine. It should be like Figure 11.

	¥	
COMPONENTS ↓A ~ AccelerationTest ↓ StandardCar	AccelerationTest Tests acceleration at full throttle Day4.Reconfigurable.Configurations.Acc	celerationTest
 throttle engine transmission driveline chassis 	INFORMATION	>
	PROPERTIES	+ ¥
	engine	^
	BasicEngine Engine with ideal throttle characteristics BasicEngine	
	transmission	~
	driveline	~
	chassis	~

Figure 11 Changing class

4. Repeat for all the other sub-models as well, add a constant input for full *throttle* (=1.0). You should now have something like Figure 12.

Figure 12 Changing class for all components and adding input block

5. Complete the model with a constant input for full *throttle* (=1.0), set $v_start = 25$ m/s and simulate for 10 s.

Extra work

- Add losses to the chassis model. Use for example *Modelica.Mechanics.Rotational.Sources.LinearSpeedDependentTorque* and *Modelica.Mechanics.Rotational.Sources.QuadraticSpeedDependentTorque* to model rolling resistance and aerodynamic drag.
- 2. Currently, only v_start is a parameter of the subsystem interfaces. Move all parameters that make sense to the interface levels.
- 3. Add a brake system with pedal force as input.
- 4. Create a driver model that follows the input speed by accelerating and braking.

